


# **Product Catalogue**

2018 - Edition 1



# **Pneumatech Air Treatment**



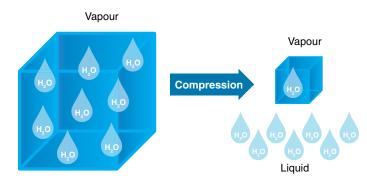
# **Contents**

| Adsorption Dryers7                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------|
| PH 2 - 45 HE - Extruded profile heatless adsorption dryers                                                            |
| PH 55 - 550 HE - Extruded profile heatless adsorption dryers                                                          |
| PH 700 - 2950 HE - Welded vessel heatless adsorption dryers                                                           |
| PH 55 - 550 S - The cost-efficient alternative to PH 55-550 HE14                                                      |
| PH 760 - 3390 S - The cost-efficient alternative to PH 700-2950 HE16                                                  |
| PE 760 - 3390 S - Heated purge adsorption dryers                                                                      |
| PB 210 - 635 HE (P/ZP) - Blower purge / zero purge adsorption dryers20                                                |
| PB 700 - 6350 HE (P/ZP) - Blower purge / zero purge adsorption dryers22                                               |
| PB 760 - 3390 S - The cost efficient alternative to PB 700-2950 HE24                                                  |
| Refrigeration dryers27                                                                                                |
| Cool 12 - 272 - Non-cycling refrigeration dryers28                                                                    |
| AD 10 - 3000 - Non-cycling refrigeration dryers30                                                                     |
| AD 10 - 3000 - Non-cycling refrigeration dryers<br>Anti-corrosion treatment (available for all refrigerant dryers).32 |
| AC 15 - 600 - Cycling refrigeration dryers                                                                            |
| AC 650 - 2100 - Large cycling refrigeration dryers (including VSD solutions)                                          |
| AC HP 20 - 2120 - High-pressure refrigeration dryers38                                                                |
| Membrane Dryers41                                                                                                     |
| M POU 2 - 16 - Point-of-use membrane dryers42                                                                         |
| Filter Solutions45                                                                                                    |
| TF 1 - 11 - Threaded filters                                                                                          |
| PF 1 - 12 - Flanged Filters                                                                                           |
| VT - Activated carbon towers + vessels50                                                                              |
| H - High Pressure Filters                                                                                             |
| SLF - Silicone Free Filters                                                                                           |
| FP & FP HP - Process Filters (incl. high pressure)56                                                                  |
| FS - Sterile Filters                                                                                                  |
| TF DC - Filters with Desiccant Cartridges60                                                                           |
| TF CC & TF HC - filters with Activated Carbon & Hopcalite cartridges                                                  |
| BREATHBOX - Portable breathing air system                                                                             |
| Competitor spare parts - Alternative line filter cartridges 64                                                        |
| Competitor spare parts - Alternative desiccants66                                                                     |

| Condensate Management                                                         | 69          |
|-------------------------------------------------------------------------------|-------------|
| SW 1 - 12 - Water Separator                                                   | 70          |
| WD - Water Detector                                                           | 72          |
| LD 100 - 204 - Zero loss drains                                               | 74          |
| TD - Timer Drain                                                              | 76          |
| MD - Mechanical zero-loss float drain                                         | 77          |
| ECOBOX 1 - Small oil water separator                                          | 78          |
| ECOBOX 2 - 4 - Oil water separators                                           | 80          |
| OWS 75 - 5000 - Oil Water Separators                                          | 82          |
| CA - Air cooled aftercoolers                                                  | 84          |
| CW 1 - 17 - Water cooled aftercoolers                                         | 86          |
| Gas Generators                                                                | 89          |
| PPNG 6 - 68 S - Nitrogen generator with Pressure                              |             |
| Swing Adsorption technology                                                   | 90          |
| PPNG 6 - 68 HE - Nitrogen generator with Pressure Swing Adsorption technology | 92          |
| PPNG SKID - High-pressure nitrogen skid                                       |             |
| PPNG 150 - 800 HE - Nitrogen generators                                       |             |
| with Pressure Swing Adsorption technology                                     | 96          |
| PMNG 5 - 75 S - Nitrogen generator with membrane technology                   | 98          |
| PPOG 1 - 120 - Oxygen generator with Pressure Swing Adsorption technology     | 100         |
| Oxygen solutions                                                              |             |
|                                                                               |             |
| Air Receivers                                                                 | 105         |
| V Range - Air & Nitrogen receivers                                            | 106         |
| V HP - Air & Nitrogen receivers                                               | 108         |
| Purity measurement equipment                                                  | 111         |
| PDP CHECK M - Mobile PDP measurement                                          | 112         |
| PDP CHECK S - Stationary PDP measurement                                      |             |
| FLOW CHECK - Flow measurement                                                 |             |
| LEAK CHECK - Leak detection                                                   | 115         |
| OIL CHECK - Oil aerosol detection                                             | 11 <u>6</u> |
| OIL VAP CHECK - Oil vapor detection                                           |             |
| CHECKBOX M - Portable data logger                                             |             |
| CHECKBOX S - Stationary data logger                                           | 119         |
| Compressed air purity                                                         | 120         |

# **Compressed Air Treatment**

Untreated compressed air always contains contaminants because of the nature of the gas and how it is produced. The need for air treatment basically results from 3 characteristics of compressed air.


#### Compressed air is always wet

#### **Contaminants**

• Liquid water - water aerosols - water vapor

#### How are the contaminants formed?

As water is incompressible, the amount of moisture per m³ increases when air is compressed. The maximum amount of moisture per m³ air1 is however limited for a certain temperature. Condensation will thus be formed when air is compressed.



8 m³ ambient air

1 m<sup>3</sup> compressed air at 7 barg(e)

#### What problems can the contaminants cause?

- · Corrosion of pipe lines
- Bad quality of the end product
- Malfunctioning of controls
- · Build-up of ice
- Cultivation of micro-organisms

#### The Pneumatech solution

- · Water separators
- Drains
- Refrigeration dryers
- · Adsorption dryers

<sup>&</sup>lt;sup>1</sup>The so-called holding capacity of moisture in air.



#### Compressed air is always contaminated

#### **Contaminants**

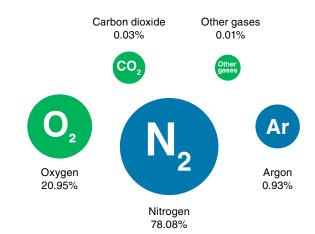
- · Liquid oil oil aerosols oil vapor
- · Dirt microorganisms pipescale
- Trace gases: carbon monoxide, sulfur dioxide, nitrous oxide

#### How are the contaminants formed?

Added by the compressor installation through oil lubricated compressors (oil), adsorption dryers and activated carbon filters (dirt), piping network and vessels (pipescale).

Trash in, trash out: oil vapors from car exhausts and industrial processes, atmospheric dirt and micro-organisms get sucked in by the compressor. As with water, their concentration – and thus importance – increases significantly after compression.




#### Compressed air composes of other gases

#### **Contaminants**

- · Oxygen: contaminant if oxidation is unwanted
- Nitrogen: contaminant if oxidation is wanted

#### How are the contaminants formed?

Dry air is mainly composed of nitrogen (78%) and oxygen (21%). Air will keep the same nitrogen/oxygen ratio after compression, so additional treatment is needed to change this gas mix.



#### What problems can the contaminants cause?

- Damaged production equipment, leading to inefficiencies and increased costs
- · Air pollution, creating unhealthy work environments
- · Pollution of the condensate

#### What problems can the contaminants cause?

- Oxygen causes oxidation, leading to explosions or fire of flammables (fast oxidation) or to rotting processes and corrosion of metals (slow oxidation).
- Nitrogen is an inert gas that can prevent oxidation to happen.

#### The Pneumatech solution

- · Coalescing filters for oil aerosols / particles
- · Oil vapor filters
- Dust filters
- · Oil-water separators
- Breathing air units

#### The Pneumatech solution

- PSA nitrogen generators
- Membrane nitrogen generators
- PSA oxygen generators

# Optimal control & monitoring thanks to Pneumatech's Purelogic<sup>™</sup> controller

The Purelogic<sup>™</sup> Central Controller is the ideal complement to your dryers and gas generators. This state-of-the-art control solution will provide optimal control and monitoring of your machines, increased reliability and reduced energy use.

The built-in web server allows direct read-out of all important parameters, settings and service counters of your dryer, by a simple connection via a local area network. Machine status information can also be received and dryers remotely start/stopped through voltage-free contacts. Communication with industrial protocols such as Modbus and Profibus is also possible.







# **Adsorption Dryers**

Pneumatech offers four different adsorption dryer technologies. Heatless dryers (PH) have the lowest initial investment cost, while zero-purge adsorption dryers (PB ZP) the lowest lifecycle cost. Heated purge (PE) and blower purge (PB) dryers balance between both.

No matter what your preference is, Pneumatech guarantees stable, dry air at the lowest operating costs and with excellent control and monitoring capabilities for each dryer you select.

# PH 2 - 45 HE - Extruded profile heatless adsorption dryers

#### Features & Benefits

- Advanced energy management for lowest operating costs
  - Compressor synchronization
  - Purge nozzle optimization (optional)
  - PDP control (optional)
- High-quality, high-efficient desiccant, selected for the right application – molecular sieves
- ➤ Spring-loaded cartridges, hence minimizing the risk of crushed desiccant
- Counter-current regeneration for optimal energy efficiency and guaranteed dry air
- Designed for transportability & mountability
  - Dryer can be installed vertically or horizontally
  - Wall-mounting kit (optional)
- In & outlet can be reversed
- Low noise levels while purging
- ▶ High reliability and robust design

#### **General Specifications**

- Heatless adsorption dryers: extruded profile design
- Dew points achievable: -40°C/-40°F & -70°C/-94°F
- ▶ Pressure range: 4-16 barg/58-232 psig
- Ambient temperature range: 1-50°C/34-122°F
- ► Inlet temperature range: 1-60°C/34-140°F
- ▶ Power supply: 230VAC 50/60Hz



Purge nozzle optimization



Wall mounting kit



PDP control



Incorporating high-quality components, PH heatless adsorption dryers provide you with clean, dry air to extend the life of your equipment and products. Heatless adsorption dryers use dry, expanded purge air to remove moisture from the desiccant material.

PH 2-45 HE adsorption dryers are capable of drying air to a PDP of -70°C/-94°F, simply by reducing the flow, thanks to the use of carefully selected molecular sieves. The desiccant is housed in a robust extruded aluminum body, which can operate until 16 barg/232 psig (fatigue load). The dryers are equipped with

a mounted pre-filter and an integrated after-filter as standard, can be installed vertically and can also be wall-mounted with a specially designed wall-mounting kit (optional).

The controller ensures the lowest operational costs thanks to compressor synchronization and the optional PDP control. LED's on the controller indicate whether power supply is connected, towers are pressurized and solenoids are functioning properly. It also provides with preventive maintenance information. Alarms can also be triggered remote thanks to the available voltage-free contact.

| Technical specificat          | Technical specifications for PH 2 HE up to PH 45 HE (standard version, PDP -40 °C) |             |             |             |           |           |           |           |           |           |  |
|-------------------------------|------------------------------------------------------------------------------------|-------------|-------------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|--|
| Specification                 | Unit                                                                               | PH 2 HE     | PH 4 HE     | PH 6 HE     | PH 11 HE  | PH 15 HE  | PH 20 HE  | PH 25 HE  | PH 35 HE  | PH 45 HE  |  |
| Nominal volume flow at        | I/s                                                                                | 1           | 2           | 3           | 5         | 7         | 10        | 12        | 17        | 22        |  |
| dryer inlet (1)               | m³/hr                                                                              | 4           | 7           | 11          | 18        | 25        | 36        | 43        | 61        | 79        |  |
| Average purge air consumption | %                                                                                  | 18          | 18          | 18          | 18        | 18        | 18        | 18        | 18        | 18        |  |
| Inlet and outlet              | G                                                                                  | 1/4"        | 1/4"        | 1/4"        | 1/2"      | 1/2"      | 1/2"      | 1/2"      | 1/2"      | 1/2"      |  |
| connections                   | NPT                                                                                | 1/4"        | 1/4"        | 1/4"        | 1/2"      | 1/2"      | 1/2"      | 1/2"      | 1/2"      | 1/2"      |  |
| Pressure drop at              | barg                                                                               | 0.012       | 0.075       | 0.185       | 0.01      | 0.04      | 0.075     | 0.125     | 0.21      | 0.34      |  |
| max. flow                     | psig                                                                               | 0.17        | 1.09        | 2.68        | 0.15      | 0.58      | 1.09      | 1.81      | 3.05      | 4.93      |  |
| Included pre-filter size      | Super fine filter                                                                  | Mini 3 C HE | Mini 3 C HE | Mini 3 C HE | TF 1 C HE |  |
| Mass                          | Kg                                                                                 | 7           | 9           | 11          | 19        | 22        | 25        | 29        | 35        | 44        |  |
| IVIdSS                        | Lb                                                                                 | 15.5        | 19.8        | 24.2        | 41.9      | 48.5      | 55.1      | 63.9      | 77.1      | 97        |  |
| Height                        | mm                                                                                 | 540         | 720         | 855         | 640       | 725       | 875       | 1015      | 1270      | 1505      |  |
| Height                        | inch                                                                               | 21.2        | 28.3        | 33.6        | 25.1      | 28.5      | 34.4      | 39.9      | 50        | 59.2      |  |
| Width                         | mm                                                                                 | 197         | 197         | 197         | 320       | 320       | 320       | 320       | 320       | 320       |  |
| YYIMUI                        | inch                                                                               | 7.7         | 7.7         | 7.7         | 12.5      | 12.5      | 12.5      | 12.5      | 12.5      | 12.5      |  |
| Length                        | mm                                                                                 | 106         | 106         | 106         | 149       | 149       | 149       | 149       | 149       | 149       |  |
| Longui                        | inch                                                                               | 4.1         | 4.1         | 4.1         | 5.8       | 5.8       | 5.8       | 5.8       | 5.8       | 5.8       |  |

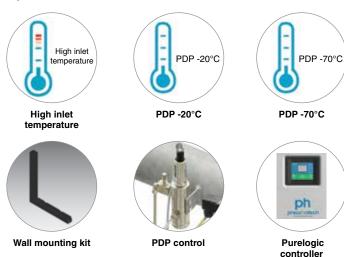
<sup>1.</sup> Flow is measured at reference conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 35°C & std PDP of -40°C at the outlet.

| Flow correction fac        | Flow correction factors due to air inlet pressure Kp |      |      |      |     |      |      |      |     |      |      |      |     |      |
|----------------------------|------------------------------------------------------|------|------|------|-----|------|------|------|-----|------|------|------|-----|------|
| Operating pressure         | barg                                                 | 4    | 5    | 6    | 7   | 8    | 9    | 10   | 11  | 12   | 13   | 14   | 15  | 16   |
| Operating pressure         | psig                                                 | 58   | 72   | 87   | 100 | 116  | 130  | 145  | 160 | 174  | 189  | 203  | 218 | 232  |
| Pressure correction factor | Кр                                                   | 0.62 | 0.75 | 0.87 | 1   | 1.12 | 1.25 | 1.37 | 1.5 | 1.62 | 1.75 | 1.87 | 2   | 2.12 |

| Flow correction factors due to air inlet temperature Kt |    |      |      |      |    |      |      |      |  |  |
|---------------------------------------------------------|----|------|------|------|----|------|------|------|--|--|
| Temperature                                             | °C | 20   | 25   | 30   | 35 | 40   | 45   | 50   |  |  |
| remperature                                             | °F | 68   | 77   | 86   | 95 | 104  | 113  | 122  |  |  |
| Temperature cor-<br>rection factor                      | Kt | 1.07 | 1.06 | 1.04 | 1  | 0.88 | 0.67 | 0.55 |  |  |

| Flow correction factors due to pressure dew point Kdp |     |     |     |  |  |  |  |  |  |
|-------------------------------------------------------|-----|-----|-----|--|--|--|--|--|--|
| Dew point                                             | °C  | -40 | -70 |  |  |  |  |  |  |
| рем роши                                              | °F  | -40 | -94 |  |  |  |  |  |  |
| Dew point correction factor                           | Kdp | 1   | 0.7 |  |  |  |  |  |  |

## PH 55 - 550 HE - Extruded profile heatless adsorption dryers


#### **Features & Benefits**

- Advanced energy management for lowest operating costs
  - Compressor synchronization
  - Purge nozzle optimization
  - PDP control (optional)
- ▶ Best-in-class performance thanks to unique valve and exhaust design (patent pending)
  - · Lowest pressure drop during drying
  - · Lowest purge loss by ensuring maximum purge air expansion during regeneration
- Low noise levels during purge and blow-off
- ▶ High-quality, high-efficient desiccant, selected for the right application
  - PDP -20°C/-3°F &• PDP -40°C/-40°F: activated alumina
  - PDP -70°C/-94°F: molecular sieves
- ► Spring-loaded desiccant, minimizing the risk of crushing
- ▶ Counter-current regeneration for optimal energy efficiency and guaranteed dry air
- Designed for transportability & mountability
  - Wall-mounting kit for PH 55-190 HE (optional)
- Optimal control and monitoring thanks to the Purelogic™ controller (optional)
- Desiccant bags for easy service from the top

#### **General Specifications**

- ▶ Heatless adsorption dryers: extruded profile design
- Dew points achievable: -20°C/-3°F; -40°C/-40°F & -70°C/-94°F
- ▶ Pressure range: 4-14 barg/58-203 psig
- Ambient temperature range: 1-45°C/34-113°F
- ▶ Inlet temperature range: 1-50°C/34-122°F (For temperatures up to 60°C/140°F: see HIT option)
- ▶ Power supply: 230VAC 50/60Hz & 115VAC 50/60Hz







IP65 protection



Incorporating high-quality components, PH heatless adsorption dryers provide you with clean, dry air to extend the life of your equipment and products. Heatless adsorption dryers use dry, expanded purge air to remove moisture from the desiccant material.

PH 55-550 HE adsorption dryers are available in 3 PDP variants: -20°C/-4°F , -40C°/-40°F and -70°C/-94°F, each optimized to provide the lowest purge loss. The unique manifold (patent pending) includes pilot air controlled 3/2-way valves, which switch fast and reliably. The pressure drop over the valves is reduced to a minimum. This does not only result in a low pressure drop over the dryer, but also ensures maximum purge air expansion during regeneration. The latter makes that the purge consumption of the dryers has been reduced significantly.

The desiccant is spring-loaded and housed in a robust extruded aluminum body, which can operate up to 14 barg/203 psig (fatigue load). The dryers are equipped with a mounted pre-filter and after-filter as standard and can also be wall-mounted with a specially designed wall-mounting kit (optional).

Operating costs are optimized at all times thanks to the availability of compressor synchronization and purge nozzle optimization as standard and PDP control as option. The full machine status can be checked on the display of the controller and the vessel pressure gauges on the unit.

The controller indicates whether power supply is connected, towers are pressurized, valves are functioning properly or preventive maintenance needs to be done. In case the optional PDP control is connected, the PDP value can monitored from the display. Alarms and warnings can also be triggered remote with the available voltage-free contacts.

Optionally the Purelogic<sup>™</sup> can be used as central brain of the adsorption dryer.

| Technical Specifi                                 | ications for PH   | 1 55 HE up  | to PH 55    | 0 HE (stai  | ndard vers   | sion, PDP    | -40 °C)      |              |              |              |              |              |
|---------------------------------------------------|-------------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Specification                                     | Unit              | PH 55<br>HE | PH 75<br>HE | PH 95<br>HE | PH 120<br>HE | PH 140<br>HE | PH 190<br>HE | PH 230<br>HE | PH 275<br>HE | PH 350<br>HE | PH 420<br>HE | PH 550<br>HE |
| Nominal volume flow                               | l/s               | 25          | 35          | 45          | 55           | 65           | 90           | 110          | 130          | 165          | 195          | 260          |
| at dryer inlet (1)                                | m³/hr             | 90          | 126         | 162         | 198          | 234          | 324          | 396          | 468          | 594          | 702          | 936          |
| Regeneration air consumption average at max. flow | %                 | 16.5        | 16.5        | 16.5        | 16           | 16           | 16.5         | 16.5         | 16.5         | 16.5         | 17           | 17           |
| Connection inlet/                                 | G                 | 1/2"        | 1"          | 1"          | 1"           | 1 1/2"       | 1 1/2"       | 1 1/2"       | 1 1/2"       | 1 1/2"       | 1 1/2"       | 2"           |
| outlet                                            | NPT               | 1/2"        | 1"          | 1"          | 1"           | 1 1/2"       | 1 1/2"       | 1 1/2"       | 1 1/2"       | 1 1/2"       | 1 1/2"       | 2"           |
| Pressure drop at                                  | barg              | 0.031       | 0.065       | 0.114       | 0.18         | 0.278        | 0.114        | 0.18         | 0.278        | 0.18         | 0.278        | 0.278        |
| max. flow                                         | psig              | 0.45        | 0.94        | 1.65        | 2.61         | 4.03         | 1.65         | 2.61         | 4.03         | 2.61         | 4.03         | 4.03         |
| Included pre &                                    | Super fine filter | TF 3 C HE   | TF 4 C HE   | TF 5 C HE   | TF 5 C HE    | TF 6 C HE    | TF 6 C HE    | TF 6 C HE    | TF 7 C HE    | TF 8 C HE    | TF 8 C HE    | TF 9 C HE    |
| after filter size                                 | Dust filter       | TF 3 S HE   | TF 4 S HE   | TF 5 S HE   | TF 5 S HE    | TF6SHE       | TF 6 S HE    | TF 6 S HE    | TF 7 S HE    | TF8SHE       | TF8SHE       | TF9SHE       |
| Height                                            | mm                | 1205        | 1205        | 1495        | 1495         | 1835         | 1495         | 1495         | 1835         | 1495         | 1835         | 1835         |
| rieigiit                                          | inch              | 47.4        | 47.4        | 58.9        | 58.9         | 72.2         | 58.9         | 58.9         | 72.2         | 58.9         | 72.2         | 72.2         |
| Width                                             | mm                | 807         | 827         | 847         | 847          | 877          | 907          | 906          | 907          | 907          | 907          | 985          |
| widii                                             | inch              | 31.8        | 32.6        | 33.3        | 33.3         | 34.5         | 35.7         | 35.7         | 35.7         | 35.7         | 35.7         | 38.8         |
| Length                                            | mm                | 394         | 394         | 394         | 394          | 394          | 564          | 564          | 564          | 734          | 734          | 929          |
| Longui                                            | inch              | 15.5        | 15.5        | 15.5        | 15.5         | 15.5         | 22.2         | 22.2         | 22.2         | 28.9         | 28.9         | 36.6         |
| Mass                                              | KG                | 100         | 109         | 128         | 140          | 165          | 217          | 234          | 276          | 331          | 389          | 500          |
| Madd                                              | Lb                | 220.5       | 240.3       | 282.2       | 308.6        | 363.8        | 478.4        | 515.9        | 608.5        | 729.7        | 857.6        | 1102.3       |

<sup>\*1.</sup> Flow is measured at Refernce Conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 35°C & std PDP of -40°C at the outlet

| Flow correction fact       | Flow correction factors due to air inlet pressure |      |      |      |     |      |      |      |     |      |      |      |
|----------------------------|---------------------------------------------------|------|------|------|-----|------|------|------|-----|------|------|------|
| Operating pressure         | barg                                              | 4    | 5    | 6    | 7   | 8    | 9    | 10   | 11  | 12   | 13   | 14   |
| Operating pressure         | psig                                              | 58   | 72   | 87   | 100 | 116  | 130  | 145  | 160 | 174  | 189  | 203  |
| Pressure correction factor | Кр                                                | 0.62 | 0.75 | 0.87 | 1   | 1.12 | 1.25 | 1.37 | 1.5 | 1.62 | 1.75 | 1.87 |

| Flow correction factors due to air inlet temperature |    |    |    |    |    |      |      |      |  |  |  |
|------------------------------------------------------|----|----|----|----|----|------|------|------|--|--|--|
| Temperature                                          | °C | 20 | 25 | 30 | 35 | 40   | 45   | 50   |  |  |  |
| remperature                                          | °F | 68 | 77 | 86 | 95 | 104  | 113  | 122  |  |  |  |
| Temperature correction factor                        | Kt | 1  | 1  | 1  | 1  | 0.84 | 0.67 | 0.55 |  |  |  |

# PH 700 - 2950 HE - Welded vessel heatless adsorption dryers

#### **Features & Benefits**

- Advanced energy management for lowest operating costs
  - PDP control
  - Compressor synchronization
  - Purge nozzle optimization (optional)
- ▶ High-quality, high-efficient desiccant, selected for the right application
  - PDP -40°C/-40°F (std): activated alumina
  - PDP -70°C/-94°F (option): molecular sieves
- Minimal risk of crushed desiccant thanks to the large vessel diameter and the sonic nozzle
- ► Counter-current regeneration for optimal energy efficiency and guaranteed dry air
- ▶ High reliability and robust design
- ▶ Low noise levels while purging
- Designed for transportability
- Optimal control and monitoring thanks to the Purelogic™ controller

#### **General Specifications**

- ▶ Heatless adsorption dryers: welded vessel design
- ▶ Dew points achievable: -40°C/-40°F & -70°C/-94°F
- ▶ Pressure range: 4-10 barg/58-145 psig (14 barg/203 psig variant available on request)
- ▶ Ambient temperature range: 1-40°C/34-104°F
- ▶ Inlet temperature range: 1-55°C/34-131°F
- ▶ Power supply: 230VAC 50 Hz; 115VAC 60 Hz 3 ph





PDP -70°C

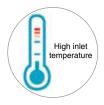


Purge nozzle optimization



2nd PDP read out




In and outlet filters



**Vessel Safety** valves



Wooden **Packaging** 



**High inlet** 



Incorporating high-quality components, PH heatless adsorption dryers provide you with clean, dry air to extend the life of your equipment and products. Heatless adsorption dryers use dry, expanded purge air to remove moisture from the desiccant material.

PH 700-2950 HE adsorption dryers are capable of drying air to a PDP of -40°C/-40°F as standard and -70°C/-94°F as option for higher flows up to 5040 m<sup>3</sup>/hr / 2950 cfm. The desiccant is housed in welded vessels, which are coated and can operate up to 10 barg/145 psig (fatigue load). All dryers can be equipped with 2 coalescing pre-filters before and 1 particulate filter after the dryer (optional).

The PH 700-2950 HE range has the Purelogic™ as central operating costs; ensures maximum reliability by monitoring the most important parameters; and offers impressive control and monitoring capabilities.

| Specification                                       | Unit              | PH700 HE   | PH850 HE   | PH1165 HE | PH1800 HE | PH2350 HE | PH2950 HE |
|-----------------------------------------------------|-------------------|------------|------------|-----------|-----------|-----------|-----------|
| Nominal volume Flow at                              | l/s               | 330        | 400        | 550       | 850       | 1100      | 1400      |
| Dryer Inlet <sup>(1)</sup>                          | m³/hr             | 1188       | 1440       | 1980      | 3060      | 3960      | 5040      |
| Avg. purge air consumption                          | %                 | 18         | 16         | 17.8      | 17.9      | 18        | 16.3      |
| nlet and outlet<br>connections                      | DIN PN16          | DN80       | DN80       | DN80      | DN100     | DN100     | DN150     |
| Pressure Drop over                                  | barg              | 0.1        | 0.1        | 0.1       | 0.1       | 0.1       | 0.11      |
| Dryer excluding Filters                             | psig              | 1.45       | 1.45       | 1.45      | 1.45      | 1.45      | 1.60      |
|                                                     | Fine filter       | TF 10 G HE | TF 10 G HE | FF 1 G HE | FF 2 G HE | FF 3 G HE | FF 4 G HE |
| Optional Pre & After<br>Filter Sizes <sup>(2)</sup> | Super fine filter | TF 10 C HE | TF 10 C HE | FF 1 C HE | FF 2 C HE | FF 3 C HE | FF 4 C HE |
|                                                     | Dust filter       | TF 10 S HE | TF 10 S HE | FF 1 S HE | FF 2 S HE | FF 3 S HE | FF 4 S HE |
| Mass                                                | Kg                | 950        | 1030       | 1310      | 2120      | 2600      | 3700      |
| viass                                               | Lb                | 2109       | 2287       | 2908      | 4706      | 5772      | 8215      |
| Height                                              | mm                | 2537       | 2537       | 2592      | 2655      | 2637      | 2576      |
| leight                                              | inch              | 99.9       | 99.9       | 102.0     | 104.5     | 103.8     | 101.4     |
| Vidth                                               | mm                | 1088       | 1088       | 1091      | 1259      | 1259      | 1428      |
| Widii                                               | inch              | 42.8       | 42.8       | 43.0      | 49.6      | 49.6      | 56.2      |
| anath                                               | mm                | 1776       | 1776       | 1884      | 2359      | 2472      | 2693      |
| _ength                                              | inch              | 69.9       | 69.9       | 74.2      | 92.9      | 97.3      | 106.0     |

<sup>1.</sup> Flow is measured at Reference Conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 35°C & std PDP of -40°C at the outlet.

<sup>2.</sup> Filters are sized at reference conditions. Consult the AML of the filters for sizing outside the reference conditions.

| Correction factor Kp x K | Correction factor Kp x Kt for PDP -40/-70 |                              |        |         |         |         |          |  |  |  |  |
|--------------------------|-------------------------------------------|------------------------------|--------|---------|---------|---------|----------|--|--|--|--|
| T inlet                  | Working Pressure                          | Working Pressure barg (psig) |        |         |         |         |          |  |  |  |  |
| °C(°F)                   | 4.5 (65)                                  | 5 (73)                       | 6 (87) | 7 (102) | 8 (116) | 9 (131) | 10 (145) |  |  |  |  |
| <=35(95)                 | 0.59                                      | 0.70                         | 0.88   | 1       | 1       | 1.05    | 1.10     |  |  |  |  |
| 40(104)                  | 0.50                                      | 0.59                         | 0.74   | 0.84    | 0.95    | 1.05    | 1.10     |  |  |  |  |
| 45(113)                  | 0.42                                      | 0.50                         | 0.62   | 0.71    | 0.80    | 0.89    | 0.98     |  |  |  |  |
| 50(122) for HIT          | 0.33                                      | 0.38                         | 0.48   | 0.55    | 0.62    | 0.69    | 0.76     |  |  |  |  |

| PDP Flow correction factor  |     |     |     |      |  |  |  |  |
|-----------------------------|-----|-----|-----|------|--|--|--|--|
| Dew point                   | °C  | -40 | -50 | -60  |  |  |  |  |
| Dew point                   | °F  | -40 | -58 | -76  |  |  |  |  |
| Dew point correction factor | Kdp | 1   | 0.9 | 0.85 |  |  |  |  |

### PH 55 - 550 S - The cost-efficient alternative to PH 55-550 HE

#### **Features & Benefits**

- Advanced energy management for lowest operating costs
  - Compressor synchronization
  - Purge nozzle optimization (2 nozzles)
  - PDP control (optional)
- ▶ High reliability and low maintenance costs thanks to unique valve design (patent pending)
- ▶ High-quality desiccant, resulting in a consistent PDP of -20°C/-3°F or -40°C/-40°F
- Spring-loaded desiccant, minimizing the risk of crushing
- ▶ Counter-current regeneration for optimal energy efficiency and guaranteed dry air
- Designed for transportability & mountability
  - Wall-mounting kit for PH 55-140 S (optional)
- Advanced controller to monitor machine status at all times
- Desiccant bags for easy service from the top

#### **General Specifications**

- ▶ Heatless adsorption dryers: extruded profile design
- ▶ Dew points achievable: -20°C/-3°F & -40°C/-40°F
- Pressure range: 4-14 barg / 58-203 psig
- Ambient temperature range: 1-45°C/34-113°F
- ▶ Inlet temperature range: 1-50°C/34-122°F
- ▶ Power supply: 230VAC 50/60Hz & 115VAC 50/60Hz







Wall mounting kit

PDP control



Incorporating high-quality components, PH heatless adsorption dryers provide you with clean, dry air to extend the life of your equipment and products. Heatless adsorption dryers use dry, expanded purge air to remove moisture from the desiccant material.

PH 55-550 S adsorption dryers are available in 2 PDP variants: -20°C/-4°F and -40C°/-40°F. The unique manifold (patent pending) includes pilot air controlled 3/2-way valves, which switch fast and

The desiccant is spring-loaded and housed in a robust extruded aluminum body, which can operate up to 14 barg/203 psig (fatigue load). Pre- and afterfilters are delivered as standard with every dryer.

Operating costs are optimized at all times thanks to the availability of compressor synchronization and purge nozzle optimization as standard and PDP control as option. The full machine status can be checked on the display of the controller and the vessel pressure gauges on the unit. The controller indicates whether power supply is connected, towers are pressurized, valves are functioning properly or preventive maintenance needs to be done. In case the optional PDP control is connected, the PDP value can monitored from the display. Alarms and warnings can also be triggered remote with the available voltage-free contacts.

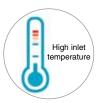
| Technical specifications for PH 55 S up to PH 550 S (standard version, PDP -40 °C) |                   |          |         |         |          |          |          |          |          |          |          |          |  |
|------------------------------------------------------------------------------------|-------------------|----------|---------|---------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Specification                                                                      | Unit              | PH 55 S  | PH 75 S | PH 95 S | PH 120 S | PH 140 S | PH 190 S | PH 230 S | PH 275 S | PH 350 S | PH 420 S | PH 550 S |  |
| Nominal volume                                                                     | I/s               | 25       | 35      | 45      | 55       | 65       | 90       | 110      | 130      | 165      | 195      | 260      |  |
| flow at dryer inlet                                                                | m³/hr             | 90       | 126     | 162     | 198      | 234      | 324      | 396      | 468      | 594      | 702      | 936      |  |
| Regeneration air consumption average at max. flow (1) (2)                          | %                 | 18.5     | 18.5    | 18.5    | 18.5     | 18.5     | 18.5     | 18.5     | 18.5     | 18.5     | 18.5     | 18.5     |  |
| Pressure drop at                                                                   | barg              | 0.03     | 0.059   | 0.107   | 0.171    | 0.251    | 0.107    | 0.171    | 0.251    | 0.447    | 0.251    | 0.494    |  |
| max. flow                                                                          | psig              | 0.44     | 0.86    | 1.55    | 2.48     | 3.64     | 1.55     | 2.48     | 3.64     | 6.48     | 3.64     | 7.16     |  |
| Connection inlet/                                                                  | G                 | 1/2"     | 1/2"    | 1"      | 1"       | 1"       | 1 1/2"   | 1 1/2"   | 1 1/2"   | 1 1/2"   | 1 1/2"   | 1 1/2"   |  |
| outlet                                                                             | NPT               | 1/2"     | 1/2"    | 1"      | 1"       | 1"       | 1 1/2"   | 1 1/2"   | 1 1/2"   | 1 1/2"   | 1 1/2"   | 1 1/2"   |  |
| Integrated filter                                                                  | Super fine filter | TF 2 C S | TF3CS   | TF4CS   | TF5CS    | TF5CS    | TF6CS    | TF6CS    | TF6CS    | TF7CS    | TF8CS    | TF8CS    |  |
| model                                                                              | Dust filter       | TF2SS    | TF3SS   | TF4SS   | TF5SS    | TF5SS    | TF6SS    | TF6SS    | TF6SS    | TF7SS    | TF8SS    | TF8SS    |  |
| Height                                                                             | mm                | 1070     | 1115    | 1285    | 1465     | 1615     | 1285     | 1465     | 1615     | 1695     | 1615     | 1915     |  |
| Tielgiit                                                                           | Inch              | 42.1     | 43.9    | 50.6    | 57.7     | 63.6     | 50.6     | 57.7     | 63.6     | 66.7     | 63.6     | 75.4     |  |
| Width                                                                              | mm                | 620      | 620     | 620     | 620      | 620      | 620      | 620      | 620      | 620      | 620      | 620      |  |
| Widti                                                                              | Inch              | 24.4     | 24.4    | 24.4    | 24.4     | 24.4     | 24.4     | 24.4     | 24.4     | 24.4     | 24.4     | 24.4     |  |
| Length                                                                             | mm                | 401      | 401     | 401     | 401      | 401      | 571      | 571      | 571      | 571      | 738      | 738      |  |
| Lengui                                                                             | Inch              | 15.8     | 15.8    | 15.8    | 15.8     | 15.8     | 22.5     | 22.5     | 22.5     | 22.5     | 29.1     | 29.1     |  |
| Mass                                                                               | KG                | 87       | 88      | 99      | 114      | 124      | 165      | 197      | 211      | 245      | 298      | 328      |  |
| WIGOS                                                                              | Lb                | 191.8    | 194.0   | 218.3   | 251.3    | 273.4    | 363.8    | 434.3    | 465.2    | 540.1    | 657.0    | 723.1    |  |

<sup>\*1.</sup> Flow is measured at reference conditions: 1 bara and 25°C at operating pressure of 7 barg,inlet temperature 35°C & std PDP of -40°C at the outlet.

| Flow correction factors due | Flow correction factors due to air inlet pressure Kp |      |      |      |   |      |      |      |     |      |      |      |  |
|-----------------------------|------------------------------------------------------|------|------|------|---|------|------|------|-----|------|------|------|--|
| Operating pressure          | barg                                                 | 4    | 5    | 6    | 7 | 8    | 9    | 10   | 11  | 12   | 13   | 14   |  |
| Pressure correction factor  | Кр                                                   | 0.62 | 0.75 | 0.87 | 1 | 1.12 | 1.25 | 1.37 | 1.5 | 1.62 | 1.75 | 1.87 |  |

| Flow correction factors due                                                                         | Flow correction factors due to air inlet temperature Kt |   |   |   |   |      |      |      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------|---|---|---|---|------|------|------|--|--|--|--|
| Temperature         °C         20         25         30         35         40         45         50 |                                                         |   |   |   |   |      |      |      |  |  |  |  |
| Temperature correction factor                                                                       | Kt                                                      | 1 | 1 | 1 | 1 | 0.84 | 0.67 | 0.55 |  |  |  |  |

### PH 760 - 3390 S - The cost-efficient alternative to PH 700-2950 HE


#### Features & Benefits

- Advanced energy management for lowest operating costs
  - Compressor synchronization
  - PDP control (optional)
- ▶ High-quality, high-efficient desiccant, selected for the right application
  - PDP -40°C/-40°F (std): **Activated Alumina**
- ▶ Minimal risk of crushed desiccant thanks to the optional sonic nozzle and the large vessel diameter
- Counter-current regeneration for optimal energy efficiency and guaranteed dry air
- ▶ High reliability and robust design
- ▶ Low noise levels while purging
- Designed for transportability

#### **General Specifications**

- ▶ Heatless adsorption dryers: welded vessel design
- ▶ Dew point achievable: -40°C/-40°F
- ▶ Pressure range: 4-10 barg/58-145 psig
- Ambient temperature range: 1-40°C/34-104°F
- ▶ Inlet temperature range: 1-50°C/34-122°F
- ▶ Power supply: 230VAC 50 Hz; 115VAC 60Hz 3ph





High inlet temperature



In and outlet filters



Wooden packaging



PDP control



Sonic nozzle



Pneumatic control (not compatible with PDP sensor kit)



Vessel safety valves



Incorporating high-quality components, PH heatless adsorption dryers provide you with clean, dry air to extend the life of your equipment and products. Heatless adsorption dryers use dry, expanded purge air to remove moisture from the desiccant material.

PH 760-3390 S adsorption dryers are capable of drying air to a PDP of -40°C/-40°F. The desiccant is housed in welded vessels. which are coated and can operate up to 10 barg / 145 psig (fatigue load). Mounted pre- and after-filters can be ordered as an option.

Operating costs are optimized thanks to the availability of compressor synchronization as standard and PDP control as option.

The full machine status can be checked by the LEDs and display of the controller, indicating whether power supply is connected, towers are pressurized, solenoids are functioning properly or preventive maintenance needs to be done. In case the optional PDP control is connected, the PDP value can be read from the display and alarm LEDs become active if the PDP set point is not reached. Alarms and warnings can also be triggered remote with the two available voltage-free contacts. Thanks to the CANbus connection data exchange is possible to other timer cards, Purelogic<sup>™</sup> controllers or service PCs.

| Specification                                       | Unit              | PH 760 S  | PH 1020 S | PH 1330 S | PH 2060 S | PH 2670 S | PH 3390 S |
|-----------------------------------------------------|-------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Nominal volume Flow at                              | l/s               | 360       | 480       | 630       | 970       | 1260      | 1600      |
| Dryer Inlet <sup>(1) (2)</sup>                      | m³/hr             | 1296      | 1728      | 2268      | 3492      | 4536      | 5760      |
| Avg. purge air consumption                          | %                 | 16.3      | 16.4      | 19        | 20.8      | 19.3      | 15.6      |
| Pressure Drop over                                  | barg              | 0.19      | 0.14      | 0.14      | 0.12      | 0.12      | 0.11      |
| Dryer .                                             | psig              | 2.76      | 2.03      | 2.03      | 1.74      | 1.74      | 1.60      |
| Inlet and Outlet<br>Connections                     | G Thread/PN16     | G2"       | DN80      | DN80      | DN100     | DN100     | DN100     |
|                                                     | Fine filter       | TF 9 G HE | TF 10 G S | TF 11 G S | FF 2 G HE | FF 3 G HE | FF 4 G HE |
| Optional Pre & After<br>Filter Sizes <sup>(3)</sup> | Super fine filter | TF 9 C HE | TF 10 C S | TF 11 C S | FF 2 C HE | FF 3 C HE | FF 4 C HE |
|                                                     | Dust filter       | TF 9 S HE | TF 10 S S | TF 11 S S | FF 2 S HE | FF 3 S HE | FF 4 S HE |
| Mana                                                | Kg                | 650       | 970       | 1240      | 2010      | 2470      | 3560      |
| Mass                                                | Lb                | 1433      | 2138      | 2734      | 4431      | 5445      | 7848      |
| l la inda                                           | mm                | 1854      | 2549      | 2604      | 2643      | 2636      | 2576      |
| Height                                              | Inch              | 73.0      | 100.4     | 102.5     | 104.1     | 103.8     | 101.4     |
| Vidth                                               | mm                | 1854      | 2549      | 2604      | 2643      | 2636      | 2576      |
| widii                                               | Inch              | 43.9      | 38.9      | 33.2      | 40.9      | 40.9      | 56.2      |
|                                                     | mm                | 1854      | 2549      | 2604      | 2643      | 2636      | 2576      |

1. Flow is measured at Reference Conditions: 1 bara and 20°C at operating pressure of 7 barg,inlet temperature 35°C & std PDP of -40°C at the outlet

100.4

102.5

104.1

Inch

Dryer designed for mentioned volume flow, based on average duty of 80%.
 Filters are sized at reference conditions. Consult the AML of the filters for sizing outside the reference

73.0

| Kp x Kt Correcti   | Kp x Kt Correction factors for PH 760S - PH 3390S |                                                         |          |      |      |      |      |  |  |  |  |  |  |
|--------------------|---------------------------------------------------|---------------------------------------------------------|----------|------|------|------|------|--|--|--|--|--|--|
| T <sub>inlet</sub> | Working F                                         | ressure ba                                              | rg(psig) |      |      |      |      |  |  |  |  |  |  |
| °C(°F)             | 4.5 (65)                                          | 4.5 (65) 5 (73) 6 (87) 7 (102) 8 (116) 9 (131) 10 (145) |          |      |      |      |      |  |  |  |  |  |  |
| <=35(95)           | 0.59                                              | 0.7                                                     | 0.88     | 1.00 | 1.00 | 1.05 | 1.10 |  |  |  |  |  |  |
| 40(104)            | 0.5                                               | 0.59                                                    | 0.74     | 0.84 | 0.95 | 1.05 | 1.10 |  |  |  |  |  |  |
| 45(113)            | 0.42                                              | 0.5                                                     | 0.62     | 0.71 | 0.80 | 0.89 | 0.98 |  |  |  |  |  |  |
| 50(122)            | 0.33                                              | 0.38                                                    | 0.48     | 0.55 | 0.62 | 0.69 | 0.76 |  |  |  |  |  |  |

| PDP Flow correction factors for PH 760S - PH 3390S |          |     |     |      |  |  |  |  |  |  |  |
|----------------------------------------------------|----------|-----|-----|------|--|--|--|--|--|--|--|
| PDP                                                | °C       | -40 | -50 | -60  |  |  |  |  |  |  |  |
|                                                    | °F       | -40 | -58 | -76  |  |  |  |  |  |  |  |
| Correction<br>Factor                               | $K_{dp}$ | 1   | 0.9 | 0.85 |  |  |  |  |  |  |  |

103.8

101.4

# PE 760 - 3390 S - Heated purge adsorption dryers

#### **Features & Benefits**

- Advanced energy management for lowest operating costs
  - Compressor synchronization
  - PDP control (optional)
  - · Regeneration & cooling temperature control
- ▶ High-quality, high-efficient desiccant, selected for the right application
  - PDP -40°C/-40°F (std): Activated Alumina<sup>{1}</sup>
  - PDP -70°C/-94°F (option): Molecular sieves and Activated alumina
- ▶ Minimal risk of crushed desiccant thanks to the sonic nozzle and the large vessel diameter
- ▶ Counter-current regeneration for optimal energy efficiency and guaranteed dry air
- ▶ High reliability and robust design
- ▶ Low noise levels while purging
- Designed for transportability
- ▶ High efficient heaters, designed for maximum lifetime and minimal risk
- Optimal control and monitoring thanks to the Purelogic™ controller

#### **General Specifications**

- ▶ Heated purge adsorption dryers: welded vessel design
- ▶ Dew points achievable: -40°C/-40°F & -70°C/-94°F
- Pressure range: 4-10 barg/58-145 psig
- Ambient temperature range: 1-40°C/34-104°F
- ► Inlet temperature range: 1-45°C/34-113°F
- ▶ Power supply: 400VAC 50Hz; 440-460VAC



PDP -70°C (Except PE760)



PDP control



In and outlet filters



Vessel insulation (required for PDP-70°C option)



Wooden packaging (Std on PE760)



Vessel safety valves (Std on PE760)



With distinctive, patented technology, PE adsorption dryers provide you with a dry air solution; at a lower initial investment cost than PB blower purge dryers and a lower lifecycle cost than PH heatless dryers. PE dryers use heated purge air to remove moisture from the desiccant material.

PE 760S-3390S adsorption dryers are capable of drying air to a PDP of -40°C/-40°F as standard and -70°C/-94°F as option. The desiccant is housed in welded vessels, which are coated and can

Technical specifications for PE 760S up to PE 3390S (standard version, PDP -40 °C)

operate up to 10 barg/145 psig (fatigue load). Mounted pre- and after- filters can be ordered as an option.

The Purelogic<sup>™</sup> is the central brain of the adsorption dryer. It optimizes operating costs thanks to the availability of regeneration temperature control, PDP control (optional) and compressor synchronization; ensures maximum reliability by monitoring the most important parameters of the dryer; and offers impressive control and monitoring capabilities.

| Specification                                    | Unit              | PE 760 S | PE 1020 S | PE 1330 S | PE 2060 S | PE 2670 S | PE 3390 S |
|--------------------------------------------------|-------------------|----------|-----------|-----------|-----------|-----------|-----------|
| Nominal volume flow at                           | l/s               | 360      | 480       | 630       | 970       | 1260      | 1600      |
| dryer inlet(1) (2)                               | m³/hr             | 1296     | 1728      | 2268      | 3492      | 4536      | 5760      |
| Average purge air consumption                    | %                 | 10       | 10        | 10        | 10        | 10        | 10        |
| Pressure drop at max.                            | barg              | 0.27     | 0.17      | 0.17      | 0.17      | 0.17      | 0.11      |
| flow                                             | psig              | 3.92     | 2.47      | 2.47      | 2.47      | 2.47      | 1.60      |
| Inlet and outlet connections                     | PN16              | DN 50    | DN 80     | DN 80     | DN 100    | DN 100    | DN 150    |
|                                                  | Fine filter       | TF 9 G S | TF 10 G S | TF 11 G S | FF 2 G HE | FF 3 G HE | FF 4 G HE |
| Optional pre & after filter sizes <sup>(3)</sup> | Super fine filter | TF 9 C S | TF 10 C S | TF 11 C S | FF 2 C HE | FF 3 C HE | FF 4 C HE |
|                                                  | Dust filter       | TF9SS    | TF 10 S S | TF 11 S S | FF 2 S HE | FF 3 S HE | FF 4 S HE |
| Mass                                             | Kg                | 820      | 1130      | 1410      | 2280      | 2750      | 3560      |
| iviass                                           | Lb                | 1808     | 2491      | 3109      | 5027      | 6063      | 7848      |
|                                                  | mm                | 1829     | 2558      | 2612      | 2702      | 2684      | 2603      |

101

930

37

1764

69

2. Dryer designed for mentioned volume flow, based on average duty of 80%

inch

mm

inch

mm

inch

72

1075

42

2200

87

| Correction | Correction factor Kp x Kt for -40°C PDP |          |                                              |            |        |      |      |  |  |  |  |  |  |
|------------|-----------------------------------------|----------|----------------------------------------------|------------|--------|------|------|--|--|--|--|--|--|
| T inlet    | Working                                 | pressure | barg (psig                                   | <b>g</b> ) |        |      |      |  |  |  |  |  |  |
| °C (°F)    | 4.5 (65)                                | 5 (73)   | 5 (73) 6 (87) 7 (102) 8 (116) 9 (131) 10 (14 |            |        |      |      |  |  |  |  |  |  |
| <=20 (68)  |                                         |          |                                              |            |        |      |      |  |  |  |  |  |  |
| 25 (77)    | 0.89                                    |          |                                              |            | "1,00" |      |      |  |  |  |  |  |  |
| 30 (86)    | 0.74                                    | 0.87     |                                              |            |        |      |      |  |  |  |  |  |  |
| 35 (95)    | 0.59                                    | 0.7      | 0.88                                         |            |        |      |      |  |  |  |  |  |  |
| 40 (104)   | 0.42                                    | 0.5      | 0.62                                         | 0.71       | 0.8    | 0.89 | 0.98 |  |  |  |  |  |  |
| 45 (113)   | 0.29                                    | 0.34     | 0.43                                         | 0.49       | 0.55   | 0.61 | 0.67 |  |  |  |  |  |  |

Notes for PDP-40 variants

Height

Width

Length

| Correction | Correction factor Kp x Kt for -70°C PDP |          |            |         |         |         |          |  |  |  |  |  |  |  |
|------------|-----------------------------------------|----------|------------|---------|---------|---------|----------|--|--|--|--|--|--|--|
| T inlet    | Working                                 | pressure | barg (psig | 1)      |         |         |          |  |  |  |  |  |  |  |
| °C (°F)    | 4.5 (65)                                | 5 (73)   | 6 (87)     | 7 (102) | 8 (116) | 9 (113) | 10 (145) |  |  |  |  |  |  |  |
| <=20 (68)  |                                         |          |            |         |         |         |          |  |  |  |  |  |  |  |
| 25 (77)    | 0.89                                    |          |            |         |         |         |          |  |  |  |  |  |  |  |
| 30 (86)    | 0.74                                    | 0.87     |            |         |         |         |          |  |  |  |  |  |  |  |
| 35 (95)    | 0.59                                    | 0.70     | 0.88       |         |         |         | ,        |  |  |  |  |  |  |  |
| 40 (104)   | 0.45                                    | 0.53     | 0.67       | 0.76    | 0.86    | 0.95    |          |  |  |  |  |  |  |  |
| 45 (113)   | 0.34                                    | 0.40     | 0.51       | 0.58    | 0.65    | 0.73    | 0.80     |  |  |  |  |  |  |  |

Notes for PDP-70 variants

103

930

37

1884

74

106

1085

43

2359

93

106

1085

43

2472

97

102

1342

53

2708

107

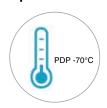
<sup>1.</sup> Flow is measured at reference conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 35°C & std PDP of -40°C at the outlet.

<sup>3.</sup> Filters are sized at reference conditions. Consult the AML of the filters for sizing outside the reference conditions.

<sup>1)</sup> Correction factors are for 100% saturated compressed air

<sup>1)</sup> Correction factors are for 80% saturated compressed air

# PB 210 - 635 HE (P/ZP) - Blower purge / zero purge adsorption dryers


#### **Features & Benefits**

- Advanced energy management for lowest operating costs
  - Compressor synchronization
  - PDP control
  - · Regeneration & cooling temperature control
  - Purge nozzle optimization (optional)
- Zero-purge variants for lowest life-cycle costs
  - Purge back-up mode for ambient conditions outside of limitations
- ▶ High-quality, high-efficient desiccant, selected for the right application
  - PDP -40°C/-40°F (std): silica gel WR & NWR
  - PDP -70°C/-94°F (optional): molecular sieves
- Minimal risk of crushed desiccant thanks to the sonic nozzle and the large vessel diameter
- Counter-current regeneration for optimal energy efficiency and guaranteed dry air
- ▶ High reliability and robust design
- ▶ Low noise levels while purging
- Designed for transportability
- High efficient heaters, designed for maximum lifetime and minimal risk
- Compact, efficient and reliable side-channel centrifugal blower
- Optimal control and monitoring thanks to the Purelogic™ controller

#### **General Specifications**

- ▶ Blower purge & zero purge adsorption dryers: welded vessel design
- Dew points achievable: -40°C/-40°F & -70°C/-94°F (-70°C/-94°F only with Purge Cooled option)
- ▶ Pressure range: 4-14 barg/58-203 psig
- Ambient temperature range: 1-45°C/34-113°F
- ▶ Inlet temperature range: 1-50°C/34-122°F
- Power supply: 400VAC 50Hz; 440-460VAC 60Hz





-70°C PDP variant available (only available on blower purge variants)



Insulated vessels



Reverse in and outlet pipe



electrical enclosure



Inlet Blower



Purge nozzle optimization



PB dryers are for customers who focus on energy efficiency and low lifecycle costs, while maintaining the highest standards in air purity. PB dryers use heated blower purge air to remove moisture from the desiccant material and have therefore no purge loss during regeneration. The Zero Purge variants reduce life cycle cost even further by also eliminating purge loss during cooling.

PB 210-635 HE adsorption dryers are capable of drying air to a PDP of -40°C/-40°F as standard and -70°C/-94°F as option for purge units. The desiccant is housed in welded vessels, which are coated and can operate up to 14.5 barg/ 210 psig (fatigue load). All dryers are standard equipped with 2 coalescing prefilters before and 1 particulate filter after the dryer.

Operating costs are reduced to the absolute minimum thanks to PDP control, regeneration & cooling temperature control and compressor synchronization; which are all integrated in the Purelogic<sup>™</sup> controller. Zero Purge variants are equipped with a purge back-up mode which switches the dryer to purge cooling mode in case PDP could not be met at ambient conditions outside of limitations. The Purelogic™ also ensures maximum reliability by monitoring the most important parameters of the dryer and offers impressive control and monitoring capabilities.

| Technical specifica               | Technical specifications for PB 210 HE up to PB 635 HE (ZP) (standard version, PDP -40 °C) |           |           |           |           |           |            |            |            |            |              |  |  |
|-----------------------------------|--------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|--------------|--|--|
| Specification                     | Unit                                                                                       | PB 210HE  | PB 320 HE | PB 390 HE | PB 530 HE | PB 635 HE | PB210HEZP  | PB320HEZP  | PB390HEZP  | PB530HEZP  | PB 635 HE ZF |  |  |
| Cooling Mode                      | -                                                                                          | Purge     | Purge     | Purge     | Purge     | Purge     | Zero Purge | Zero Purge | Zero Purge | Zero Purge | Zero Purge   |  |  |
| Nominal volume flow               | I/s                                                                                        | 100       | 150       | 185       | 250       | 300       | 100        | 150        | 185        | 250        | 300          |  |  |
| at dryer inlet <sup>(1)</sup>     | m³/hr                                                                                      | 360       | 540       | 666       | 900       | 1080      | 360        | 540        | 666        | 900        | 1080         |  |  |
| Purge air consumption average     | %                                                                                          | 2         | 2         | 2         | 2         | 2         | 0          | 0          | 0          | 0          | 0            |  |  |
| Pressure Drop Over                | barg                                                                                       | 0.2       | 0.2       | 0.2       | 0.2       | 0.2       | 0.2        | 0.2        | 0.2        | 0.2        | 0.2          |  |  |
| Dryer                             | psig                                                                                       | 2.90      | 2.90      | 2.90      | 2.90      | 2.90      | 2.90       | 2.90       | 2.90       | 2.90       | 2.90         |  |  |
| Inlet and outlet                  | G                                                                                          | 1 ½"      | 1 ½"      | 1 ½"      | 2"        | 2"        | 1 ½"       | 1 ½"       | 1 ½"       | 2"         | 2"           |  |  |
| connections                       | NPT                                                                                        | 1 ½"      | 1 ½"      | 1 ½"      | 2"        | 2"        | 1 ½"       | 1 ½"       | 1 ½"       | 2"         | 2"           |  |  |
|                                   | Fine filter                                                                                | TF 6 G HE | TF 7 G HE | TF 8 G HE | TF 9 G HE | TF 9 G HE | TF 6 G HE  | TF 7 G HE  | TF 8 G HE  | TF 9 G HE  | TF 9 G HE    |  |  |
| Standard Pre & after filter sizes | Super fine filter                                                                          | TF 6 C HE | TF 7 C HE | TF 8 C HE | TF 9 C HE | TF 9 C HE | TF 6 C HE  | TF 7 C HE  | TF8CHE     | TF 9 C HE  | TF 9 C HE    |  |  |
|                                   | Dust filter                                                                                | TF 6 S HE | TF 7 S HE | TF8SHE    | TF9SHE    | TF9SHE    | TF6SHE     | TF 7 S HE  | TF8SHE     | TF9SHE     | TF 9 S HE    |  |  |
| Height                            | mm                                                                                         | 1720      | 1770      | 1770      | 1816      | 1853      | 1855       | 1891       | 1891       | 1969       | 2006         |  |  |
| Height                            | inch                                                                                       | 67.7      | 69.7      | 69.7      | 71.5      | 73.0      | 73.0       | 74.4       | 74.4       | 77.5       | 79.0         |  |  |
| Width                             | mm                                                                                         | 770       | 870       | 870       | 955       | 1010      | 840        | 966        | 966        | 1098       | 1123         |  |  |
| vvidui                            | inch                                                                                       | 30.3      | 34.3      | 34.3      | 37.6      | 39.8      | 33.1       | 38.0       | 38.0       | 43.2       | 44.2         |  |  |
| Length                            | mm                                                                                         | 1250      | 1300      | 1300      | 1345      | 1425      | 1174       | 1360       | 1360       | 1580       | 1507         |  |  |
| Lengui                            | inch                                                                                       | 49.2      | 51.2      | 51.2      | 53.0      | 56.1      | 46.2       | 53.5       | 53.5       | 62.2       | 59.3         |  |  |
| Mass                              | Kg                                                                                         | 640       | 680       | 710       | 775       | 820       | 400        | 498        | 537        | 663        | 765          |  |  |
| IVIGOS                            | Lb                                                                                         | 1411      | 1499      | 1565      | 1709      | 1808      | 882        | 1098       | 1184       | 1462       | 1687         |  |  |

<sup>1.</sup> Flow is measured at reference conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 35°C & std PDP of -40°C at the outlet. (For ZP versions inlet temperature is 33°C)

| Flow correction            | Flow correction factors due to air inlet pressure |       |      |      |     |      |      |      |     |      |      |      |  |
|----------------------------|---------------------------------------------------|-------|------|------|-----|------|------|------|-----|------|------|------|--|
| Operating                  | barg                                              | 4.5   | 5    | 6    | 7   | 8    | 9    | 10   | 11  | 12   | 13   | 14   |  |
| pressure                   | psig                                              | 65    | 72   | 87   | 100 | 116  | 130  | 145  | 160 | 174  | 189  | 203  |  |
| Pressure correction factor | Кр                                                | 0.687 | 0.75 | 0.88 | 1   | 1.13 | 1.25 | 1.38 | 1.5 | 1.62 | 1.74 | 1.86 |  |

| Flow correction factors due to air inlet temperature (For -70°C PDP Units with Molecular Sieves) |    |    |    |    |    |     |      |      |      |  |  |  |  |
|--------------------------------------------------------------------------------------------------|----|----|----|----|----|-----|------|------|------|--|--|--|--|
| Tomporatura                                                                                      | °C | 20 | 25 | 30 | 35 | 40  | 45   | 50   | 55   |  |  |  |  |
| Temperature                                                                                      | °F | 68 | 77 | 86 | 95 | 104 | 113  | 122  | 131  |  |  |  |  |
| Temperature<br>Correction<br>Factor                                                              | Kt | 1  | 1  | 1  | 1  | 1   | 0.78 | 0.61 | 0.49 |  |  |  |  |

|                                    | Flow correction factors due to air inlet temperature (For -40°C PDP Units with Silica Gel) |    |    |    |    |      |      |  |  |  |  |  |  |  |
|------------------------------------|--------------------------------------------------------------------------------------------|----|----|----|----|------|------|--|--|--|--|--|--|--|
| Tomporatura                        | °C                                                                                         | 20 | 25 | 30 | 35 | 40   | 45   |  |  |  |  |  |  |  |
| Temperature                        | °F                                                                                         | 68 | 77 | 86 | 95 | 104  | 113  |  |  |  |  |  |  |  |
| Temperature cor-<br>rection factor | Kt                                                                                         | 1  | 1  | 1  | 1  | 0.75 | 0.55 |  |  |  |  |  |  |  |

| Flow correction<br>(For 11 barg Uni |     | due to Pres | sure Dew Poir | nt  |
|-------------------------------------|-----|-------------|---------------|-----|
| Dew point                           | °C  | 0           | -40           | -70 |
| Dew point                           | °F  | 32          | -40           | -94 |
| Dew point correction factor         | Kdp | 1           | 1             | 0.8 |

# PB 700 - 6350 HE (P/ZP) - Blower purge / zero purge adsorption dryers

#### **Features & Benefits**

- Advanced energy management for lowest operating costs
  - Compressor synchronization
  - PDP control
  - Regeneration & cooling temperature
  - Purge nozzle optimization (optional)
- Zero-purge variants with cooling in closed loop
  - · Lowest life-cycle costs
  - Excellent performance at high ambient temperatures
  - Frequency controlled blower to guarantee optimal cooler performance
- ▶ High-quality, high-efficient desiccant, selected for the right application
  - PDP -40°C/-40°F (std): silica gel + activated alumina
  - PDP -70°C/-94°F and HIT (optional): activated alumina & molecular sieves
- Minimal risk of crushed desiccant thanks to the sonic nozzle and the large vessel diameter
- ▶ Counter-current regeneration for optimal energy efficiency and guaranteed dry air
- ▶ High reliability and robust design
- ▶ Low noise levels while purging
- Designed for transportability
- Optimal control and monitoring thanks to the Purelogic™ controller

#### **General Specifications**

- ▶ Blower purge & zero purge adsorption dryers: welded vessel design
- Dew points achievable: -40°C/-40°F & -70°C/-94°F (-70°C/-94°F only with Zero Purge variants)
- Pressure range: 4-10 barg/58-145 psig (14 barg/ 203 psig available on request)
- Ambient temperature range: 1-45°C/34-113°F (For temperatures above 40°C and up to 55°C see High Ambient Temp. option)
- Inlet temperature range: 1-45°C/34-113°F (For temperatures above 45°C see HIT option)
- ▶ Power supply: 400VAC 50Hz; 440-460VAC 60Hz





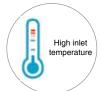
-70°C PDP variant available (only for ZP variants)



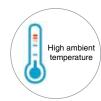


Inlet Blower **Filters** 




2nd PDP read out




Purge nozzle optimization



External pilot air connection for low pressure inlet



High inlet temperature variant (not applicable on -70°C PDP



High ambient temperature variant



In and outlet filters



Vessel safety



Wooden packaging



PB dryers are for customers who focus on energy efficiency and low lifecycle costs, while maintaining the highest standards in air purity. Pneumatech extends its PB dryer range to flows up to 10800 m³/hr with both blower purge and Zero Purge variants.

PB dryers use heated blower purge air to remove moisture from the desiccant material and have therefore no purge loss during regeneration. The Zero Purge variants reduce life cycle costs even further by also eliminating purge loss during cooling. The cooling phase happens in a closed loop, hereby minimizing the performance impact at high ambient temperature and relative humidity.

PB 700-6350 HE ZP dryers are capable of drying air to a PDP of -40°C/-40°F as standard and -70°C/-94°F as option. The desiccant is housed in welded vessels, which are coated and can operate up to 10 barg/145 psig (fatigue load). All dryers can be equipped with 2 coalescing pre-filters before and 1 particulate filter after the dryer.

Operating costs are reduced to the absolute minimum thanks to PDP control, regeneration & cooling temperature control and compressor synchronization; which are all integrated in the Purelogic<sup>™</sup> controller. The Purelogic<sup>™</sup> also ensures maximum reliability by monitoring the most important parameters of the dryer and offers impressive control and monitoring capabilities.

| Technical specifications for PB 700 HE up to PB 6350 HE (standard version, PDP -40 °C) |                               |               |               |               |               |               |              |               |               |               |                                |                                |                                |                                |                                |                                  |                                  |                                  |                                  |
|----------------------------------------------------------------------------------------|-------------------------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|---------------|---------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Specification                                                                          | Unit                          | PB700<br>HE   | PB850<br>HE   | PB1150<br>HE  | PB1800<br>HE  | PB2350<br>HE  | PB2950<br>HE | PB3800<br>HE  | PB4650<br>HE  | PB6350<br>HE  | PB700<br>HE ZP                 | PB850<br>HE ZP                 | PB1150<br>HE ZP                | PB1800<br>HE ZP                | PB2350<br>HE ZP                | PB2950<br>HE ZP                  | PB3800<br>HE ZP                  | PB4650<br>HE ZP                  | PB6350<br>HE ZP                  |
| Cooling<br>Mode                                                                        | -                             | Purge         | Purge         | Purge         | Purge         | Purge         | Purge        | Purge         | Purge         | Purge         | Zero<br>Purge<br>Air<br>Cooled | Zero<br>Purge<br>Air<br>Cooled | Zero<br>Purge<br>Air<br>Cooled | Zero<br>Purge<br>Air<br>Cooled | Zero<br>Purge<br>Air<br>Cooled | Zero<br>Purge<br>Water<br>Cooled | Zero<br>Purge<br>Water<br>Cooled | Zero<br>Purge<br>Water<br>Cooled | Zero<br>Purge<br>Water<br>Cooled |
| Nominal volume flow                                                                    | l/s                           | 330           | 400           | 550           | 850           | 1100          | 1400         | 1800          | 2200          | 3000          | 330                            | 400                            | 550                            | 850                            | 1100                           | 1400                             | 1800                             | 2200                             | 3000                             |
| at dryer<br>inlet (1)                                                                  | m³/hr                         | 1188          | 1440          | 1980          | 3060          | 3960          | 5040         | 6480          | 7920          | 10800         | 1188                           | 1440                           | 1980                           | 3060                           | 3960                           | 5040                             | 6480                             | 7920                             | 10800                            |
| Avg. purge air consumption                                                             | %                             | 2%            | 2%            | 2%            | 2%            | 2%            | 2%           | 2%            | 2%            | 2%            | 0                              | 0                              | 0                              | 0                              | 0                              | 0                                | 0                                | 0                                | 0                                |
| Pressure drop                                                                          | barg                          | 0.12          | 0.12          | 0.12          | 0.12          | 0.12          | 0.1          | 0.16          | 0.22          | 0.18          | 0.12                           | 0.12                           | 0.12                           | 0.12                           | 0.12                           | 0.1                              | 0.16                             | 0.22                             | 0.18                             |
| over dryer                                                                             | psig                          | 1.74          | 1.74          | 1.74          | 1.74          | 1.74          | 1.45         | 2.32          | 3.19          | 2.61          | 1.74                           | 1.74                           | 1.74                           | 1.74                           | 1.74                           | 1.45                             | 2.32                             | 3.19                             | 2.61                             |
| Inlet and outlet connections                                                           | DN, acc to<br>DIN2633<br>PN16 | 80            | 80            | 80            | 100           | 100           | 150          | 150           | 150           | 200           | 80                             | 80                             | 80                             | 100                            | 100                            | 150                              | 150                              | 150                              | 200                              |
|                                                                                        | Fine filter                   | TF 10 G<br>HE | TF 10 G<br>HE | FF 1 G<br>HE  | FF 2 G<br>HE  | FF 3 G<br>HE  | FF 4 G<br>HE | FF 5 G<br>HE  | FF 6 G<br>HE  | FF 7 G<br>HE  | TF 10 G<br>HE                  | TF 10 G<br>HE                  | FF 1 G<br>HE                   | FF 2 G<br>HE                   | FF 3 G<br>HE                   | FF 4 G<br>HE                     | FF 5 G<br>HE                     | FF 6 G<br>HE                     | FF 7 G<br>HE                     |
| Optional pre<br>& after filter<br>sizes <sup>(2)</sup>                                 | Super fine filter             | TF 10 C<br>HE | TF 10 C<br>HE | FF 1 C<br>HE  | FF 2 C<br>HE  | FF 3 C<br>HE  | FF 4 C<br>HE | FF 5 C<br>HE  | FF 6 C<br>HE  | FF 7 C<br>HE  | TF 10 C<br>HE                  | TF 10 C<br>HE                  | FF 1 C<br>HE                   | FF 2 C<br>HE                   | FF 3 C<br>HE                   | FF 4 C<br>HE                     | FF 5 C<br>HE                     | FF 6 C<br>HE                     | FF 7 C<br>HE                     |
|                                                                                        | Dust filter                   | TF 10 S<br>HE | TF 10 S<br>HE | FF 1 S<br>HE  | FF 2 S<br>HE  | FF 3 S<br>HE  | FF 4 S<br>HE | FF 5 S<br>HE  | FF 6 S<br>HE  | FF 7 S<br>HE  | TF 10 S<br>HE                  | TF 10 S<br>HE                  | FF 1 S<br>HE                   | FF 2 S<br>HE                   | FF 3 S<br>HE                   | FF 4 S<br>HE                     | FF 5 S<br>HE                     | FF 6 S<br>HE                     | FF 7 S<br>HE                     |
| Mass                                                                                   | Kg                            | 1190          | 1300          | 1620          | 2600          | 3040          | 4200         | 4800          | 5750          | 7800          | 1370                           | 1490                           | 1830                           | 2840                           | 3340                           | 4550                             | 5150                             | 6100                             | 8150                             |
|                                                                                        | Lb                            | 2624          | 2866          | 3571          | 5732          | 6702          | 9259         | 10582         | 12677         | 17196         | 3020                           | 3285                           | 4034                           | 6261                           | 7363                           | 10031                            | 11354                            | 13448                            | 17968                            |
| Height                                                                                 | mm                            | 2558          | 2558          | 2612          | 2702          | 2681          | 2488         | 2548          | 2548          | 2793          | 2558                           | 2558                           | 2612                           | 2702                           | 2681                           | 2548                             | 2548                             | 2548                             | 2893                             |
|                                                                                        | inch                          | 100.7<br>1024 | 100.7<br>1024 | 102.8<br>1024 | 106.4<br>1175 | 105.6<br>1175 | 98.0<br>2373 | 100.3<br>2400 | 100.3<br>2792 | 110.0<br>2834 | 100.7<br>1351                  | 100.7<br>1351                  | 102.8<br>1428                  | 106.4<br>1530                  | 105.6<br>1530                  | 100.3<br>2779                    | 100.3<br>2825                    | 100.3<br>3009                    | 113.9<br>3053                    |
| Width                                                                                  | inch                          | 40.3          | 40.3          | 40.3          | 46.3          | 46.3          | 93.4         | 94.5          | 109.9         | 111.6         | 53.2                           | 53.2                           | 56.2                           | 60.2                           | 60.2                           | 109.4                            | 111.2                            | 118.5                            | 120.2                            |
|                                                                                        | mm                            | 1764          | 1764          | 1884          | 2359          | 2472          | 2809         | 2830          | 2993          | 3385          | 1764                           | 1764                           | 1884                           | 2359                           | 2472                           | 3122                             | 3197                             | 3197                             | 3792                             |
| Length                                                                                 | inch                          | 69.4          | 69.4          | 74.2          | 92.9          | 97.3          | 110.6        | 111.4         | 117.8         | 133.3         | 69.4                           | 69.4                           | 74.2                           | 92.9                           | 97.3                           | 122.9                            | 125.9                            | 125.9                            | 149.3                            |

- 1. Flow is measured at reference conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 35°C & std PDP of -40°C at the outlet.
- 2. Filters are sized at reference conditions. Consult the AML of the filters for sizing outside the reference conditions.

| Correction | factor Kp | x Kt for PD | P-40      |         |         |         |          |
|------------|-----------|-------------|-----------|---------|---------|---------|----------|
| T inlet    | Working p | ressure bai | rg (psig) |         |         |         |          |
| °C (°F)    | 4.5 (65)  | 5 (73)      | 6 (87)    | 7 (102) | 8 (116) | 9 (131) | 10 (145) |
| <=20 (68)  |           |             |           |         |         |         |          |
| 25 (77)    | 0.89      |             | ,         |         | "1,00"  |         |          |
| 30 (86)    | 0.74      | 0.87        |           |         |         |         |          |
| 35 (95)    | 0.59      | 0.7         | 0.88      |         |         |         |          |
| 40 (104)   | 0.42      | 0.5         | 0.62      | 0.71    | 0.8     | 0.89    | 0.98     |
| 45 (113)   | 0.29      | 0.34        | 0.43      | 0.49    | 0.55    | 0.61    | 0.67     |

Notes for PDP-40 variants

- 1) Correction factor are for 100% saturated compressed air
- 2) For temperatures above 45 deg C see HIT-variant

### PB 760 - 3390 S - The cost efficient alternative to PB 700-2950 HE

#### **Features & Benefits**

- Advanced energy management for lowest operating costs
  - Compressor synchronization
  - PDP control (optional)
  - Regeneration & cooling temperature control
- High-quality, high-efficient desiccant, selected for the right application activated alumina
- Minimal risk of crushed desiccant thanks to the sonic nozzle and the large vessel diameter
- Counter-current regeneration for optimal energy efficiency and guaranteed dry air
- ▶ High reliability and robust design
- ▶ Low noise levels while purging
- Designed for transportability
- High efficient heaters, designed for maximum lifetime and minimal risk
- Compact, efficient and reliable side-channel centrifugal blower
- ▶ Optimal control and monitoring thanks to the Purelogic<sup>™</sup> controller

#### **General Specifications**

- Blower purge adsorption dryers: welded vessel design
- ▶ Dew points achievable: -40°C/-40°F
- Pressure range: 4-10 barg/58-145 psig
- Ambient temperature range: 1-40°C/34-104°F
   For ambient temperatures above 40 deg C see High Ambient Temperature variant
- Inlet temperature range: 1-45°C/34-113°F
   For temperatures above 45 deg C see HIT-variant
- Power supply: 400VAC 50Hz; 440-460VAC 60Hz





Blower inlet filter



In and outlet filters

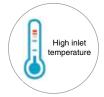


Vessel safety valves



External pilot air connection




PDP control



Wooden packaging



Vessel insulation



High inlet temperature



High ambient temperature (not on PB760S)



PB dryers are for customers who focus on energy efficiency and low lifecycle costs, while maintaining the highest standards in air purity. PB dryers use heated blower purge air to remove moisture from the desiccant material and have therefore no purge loss during regeneration.

PB 760-3390 S adsorption dryers are capable of drying air to a PDP of -40°C/-40°F. The desiccant is housed in welded vessels, which are coated and can operate up to

Technical specifications for PB 760S up to PB 3390S (standard version, PDP -40 °C)

10 barg/145 psig (fatigue load). Mounted pre- and after-filters can be ordered as an option.

The Purelogic™ is the central brain of the adsorption dryer. It optimizes operating costs thanks to the availability of regeneration & cooling temperature control, PDP control (optional) and compressor synchronization; ensures maximum reliability by monitoring the most important parameters of the dryer; and offers impressive control and monitoring capabilities.

| Specification                                    | Unit                             | PB 760 S                 | PB 1020 S | PB 1330 S | PB 2060 S | PB 2670 S | PB 3390 S |
|--------------------------------------------------|----------------------------------|--------------------------|-----------|-----------|-----------|-----------|-----------|
| Maximum volume flow at                           | l/s                              | 360                      | 480       | 630       | 970       | 1260      | 1600      |
| dryer inlet (1) (2)                              | m³/hr                            | 1296                     | 1728      | 2268      | 3492      | 4536      | 5760      |
| Average purge air consumption (3)                | %                                | 2%                       | 2%        | 2%        | 2%        | 2%        | 2%        |
| Pressure drop over dryer                         | barg                             | 0.2                      | 0.16      | 0.16      | 0.16      | 0.16      | 0.11      |
| riessure drop over dryer                         | psig                             | 2.9                      | 2.32      | 2.32      | 2.32      | 2.32      | 1.60      |
| Inlet and outlet connections                     | G Thread/DN, acc to DIN2633 PN16 | ISO 7-R2" <sup>{2}</sup> | DN80      | DN80      | DN100     | DN100     | DN150     |
|                                                  | Fine filter                      | TF 9 G S                 | TF 10 G S | TF 11 G S | FF 2 G HE | FF 3 G HE | FF 4 G HE |
| Optional pre & after filter sizes <sup>(4)</sup> | Super fine filter                | TF 9 C S                 | TF 10 C S | TF 11 C S | FF 2 C HE | FF 3 C HE | FF 4 C HE |
|                                                  | Dust filter                      | TF 9 S S                 | TF 10 S S | TF 11 S S | FF 2 S HE | FF 3 S HE | FF 4 S HE |
| Mass                                             | Kg                               | 1160                     | 1355      | 1700      | 2720      | 3185      | 4470      |
| IVIdSS                                           | Lb                               | 2557                     | 2987      | 3748      | 5997      | 7022      | 9855      |
| Height                                           | mm                               | 1829                     | 2558      | 2612      | 2702      | 2681      | 2488      |
| neigni                                           | inch                             | 72.0                     | 100.7     | 102.8     | 106.4     | 105.6     | 98.0      |
|                                                  | mm                               | 1028                     | 1024      | 1024      | 1175      | 1175      | 2373      |

1. Flow is measured at reference conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 35°C & std PDP of -40°C at the outlet.

40.3

1764

69.4

40.3

1884

74.2

46.3

2359

92.9

46.3

2472

97.3

93 4

2809

110.6

2. Dryer designed for mentioned volume flow, based on average duty of 80%

inch

mm

inch

- 2. Specially designed adapters are to be used when no filter is ordered
- 4. Filters are sized at reference conditions. Consult the AML of the filters for sizing outside the reference conditions.

40.5

1100

43.3

| Correction | factor Kp | Kt for PD   | P-40       |         |         |         |          |
|------------|-----------|-------------|------------|---------|---------|---------|----------|
| T inlet    | Working p | oressure ba | ırg (psig) |         |         |         |          |
| °C (°F)    | 4.5 (65)  | 5 (73)      | 6 (87)     | 7 (102) | 8 (116) | 9 (131) | 10 (145) |
| <=20 (68)  |           |             |            |         |         |         |          |
| 25 (77)    | 0.89      |             |            |         | "1,00"  |         |          |
| 30 (86)    | 0.74      | 0.87        |            |         |         |         |          |
| 35(95)     | 0.59      | 0.7         | 0.88       |         |         |         |          |
| 40(104)    | 0.42      | 0.5         | 0.62       | 0.71    | 0.8     | 0.89    | 0.98     |
| 45(113)    | 0.29      | 0.34        | 0.43       | 0.49    | 0.55    | 0.61    | 0.67     |

Notes for PDP-40°C variants

Width

Length

<sup>1)</sup> Correction factor are for 100% saturated compressed air.

# In-house design & manufacturing

Within Pneumatech we design and produce all our core drying, filtration and gas generator products in-house. We invest 3% of our total revenues in R&D. This results in an expert know-how of drying & filtration mechanisms, state-of-the-art test facilities and breakthrough innovations. From operations side, we distinct ourselves with our high level of automation and quality control in triple certified manufacturing production plants.













# Refrigeration dryers

With our refrigeration dryers too, we let you choose between investment cost and lifecycle cost.

Pneumatech's COOL range is our robust, no-frills drying solution, meant for basic condensate removal in your compressed air system. With the AD dryers we guarantee dry air through real-time PDP monitoring, while also reducing power consumption and compressed air losses. Our premium AC dryers optimize the energy consumption based on the actual compressed air demand, through energy saving algorithms or variable speed technology.

# Cool 12 - 272 - Non-cycling refrigeration dryers

#### **Features & Benefits**

- ▶ Solid performance & strong reliability
  - · Stable pressure dew point as low as 5°C/41°F ensuring ISO 8573-1 class 5
- ▶ Compact & easy to install
  - Simple vertical design
  - · Plug- and play mechanical & electrical connections
- Super cost saver
  - · Low initial investment
  - · Efficient cooling system ensures low energy costs
  - · Increased lifetime of tools and equipment
- ▶ Easy maintenance at low cost
  - Long service intervals
  - Easy access to key components

#### **General Specifications**

- Non-cycling refrigeration dryers
- ▶ Operating pressure: 4-16 barg/58-232 psig (4-13 barg/ 58-189 psig from COOL 145 onwards)
- ► Max. ambient temperature: 50°C / 122°F
- ▶ Flow rate: 21 to 462 m³/hr (12-272 cfm)<sup>{1}</sup>
- ▶ Pressure dew point: 5°C / 41°F (ISO 8573-1:2010 class 5)
- ▶ Power supply: 230VAC 50 Hz (60Hz version on request)
- ▶ Refrigerant: R134a (COOL 12-106) or R452A (COOL 127-272)



#### **Applications**



Pneumatic tools and equipment



**Pneumatic** control systems



Painting



Injection moulding



Car shops



Tire inflations

<sup>&</sup>lt;sup>1</sup> Flow is measured at reference conditions: ambient pressure of 1 bara and 25°C at operating pressure of 7 barg, inlet temperature 35°C.



The compressed air coming out of the compressor is always saturated. Pneumatech's reliable and robust COOL refrigeration dryers are an efficient solution to lower the presence of moisture and the resultant corrosion in your compressed air system. COOL dryers can act as a second line of defence after water separators and aftercoolers giving you a stable dew point as low as 5°C / 41°F, maintaining the ISO 8573-1 class 5 air quality.

Designed to work up to 16 barg/232 psig, COOL dryers deliver stable performance thanks to the efficient refrigerant gas and carefully selected components. The simple vertical design and small foot print make COOL dryers the easy-to-use drying solution in various industrial applications such as car shops, spray painting, injection moulding, tire inflation and many more.

| Technical specifications for COOL 12-272 50 Hz |              |          |          |          |          |          |          |          |          |          |          |          |          |  |
|------------------------------------------------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--|
| Pneumatech<br>Variants →                       | Units        | COOL 12  | COOL 21  | COOL 30  | COOL 42  | COOL 64  | COOL 76  | COOL 106 | COOL 127 | COOL 145 | COOL 184 | COOL 230 | COOL 272 |  |
| Specifications ↓                               |              |          |          |          |          |          |          |          |          |          |          |          |          |  |
| Flow <sup>{1</sup> }                           | I/s          | 5.8      | 10.0     | 14.2     | 20.0     | 30.4     | 35.8     | 50.0     | 60.0     | 68.3     | 86.7     | 108.3    | 128.3    |  |
| FIOW 19                                        | m³/hr        | 21       | 36       | 51       | 72       | 110      | 129      | 180      | 216      | 246      | 312      | 390      | 462      |  |
| Nominal electric power                         | kW           | 0.13     | 0.13     | 0.16     | 0.28     | 0.32     | 0.30     | 0.42     | 0.66     | 0.77     | 1.87     | 1.03     | 1.24     |  |
| Power Supply<br>Voltage / Phase                |              | 230/50/1 | 230/50/1 | 230/50/1 | 230/50/1 | 230/50/1 | 230/50/1 | 230/50/1 | 230/50/1 | 230/50/1 | 230/50/1 | 230/50/1 | 230/50/1 |  |
| Max Operating                                  | barg         | 16       | 16       | 16       | 16       | 16       | 16       | 16       | 16       | 13       | 13       | 13       | 13       |  |
| Pressure                                       | psig         | 232      | 232      | 232      | 232      | 232      | 232      | 232      | 232      | 188      | 188      | 188      | 188      |  |
| Refrigerant Gas                                |              | R134a    | R452A    | R452A    | R452A    | R452A    | R452A    |  |
| Inlet and Outlet<br>Connections                | G<br>Threads | 1/2" F   | 3/4" F   | 1" F     | 1" F     | 1 1/2" F | 1 1/2" F | 1 1/2" F | 1 1/2" F |  |
|                                                | L (mm)       | 233      | 233      | 233      | 233      | 233      | 233      | 233      | 310      | 310      | 310      | 310      | 310      |  |
|                                                | L (inch)     | 8.8      | 8.8      | 8.8      | 8.8      | 8.8      | 8.8      | 8.8      | 12.2     | 12.2     | 12.2     | 12.2     | 12.2     |  |
| Dimensions                                     | W (mm)       | 550      | 550      | 550      | 550      | 550      | 550      | 559      | 706      | 706      | 706      | 706      | 706      |  |
| Dimensions                                     | W (inch)     | 22       | 22       | 22       | 22       | 22       | 22       | 22       | 27.8     | 27.8     | 27.8     | 27.8     | 27.8     |  |
|                                                | H (mm)       | 561      | 561      | 561      | 561      | 561      | 561      | 561      | 994      | 994      | 994      | 994      | 994      |  |
|                                                | H (inch)     | 22.1     | 22.1     | 22.1     | 22.1     | 22.1     | 22.1     | 22.1     | 39.1     | 39.1     | 39.1     | 39.1     | 39.1     |  |
| Weight                                         | kg           | 19       | 19       | 19       | 20       | 25       | 27       | 30       | 52       | 57       | 59       | 80       | 80       |  |
| rroigitt                                       | lb           | 42       | 42       | 42       | 44       | 55       | 59       | 66       | 114      | 125      | 130      | 176      | 176      |  |

<sup>1.</sup>Flow is measured at reference conditions: ambient pressure of 1 bara and 25°C at operating pressure of 7 barg, inlet temperature 35°C.

| Correction factors for ambient | Correction factors for ambient temperature |    |      |      |     |  |  |  |  |  |  |  |  |  |
|--------------------------------|--------------------------------------------|----|------|------|-----|--|--|--|--|--|--|--|--|--|
| Ambient temperature            | °C                                         | 25 | 30   | 35   | 40  |  |  |  |  |  |  |  |  |  |
| Ambient temperature            | °F                                         | 77 | 86   | 95   | 104 |  |  |  |  |  |  |  |  |  |
| Temperature correction factor  | Kt (amb)                                   | 1  | 0.92 | 0.84 | 0.8 |  |  |  |  |  |  |  |  |  |

| Correction factors for compres | sed air in | let temper | ature |     |      | Correction factors for compressed air inlet temperature |  |  |  |  |  |  |  |  |  |  |  |  |  |
|--------------------------------|------------|------------|-------|-----|------|---------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|
| Inlet town eveture             | °C         | 30         | 35    | 40  | 45   | 50                                                      |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Inlet temperature              | °F         | 86         | 95    | 104 | 113  | 122                                                     |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Temperature correction factor  | Kt         | 1.24       | 1     | 0.8 | 0.69 | 0.54                                                    |  |  |  |  |  |  |  |  |  |  |  |  |  |

| Correction factors for compre | Correction factors for compressed air inlet pressure |     |      |     |      |      |      |     |      |      |      |      |      |  |  |
|-------------------------------|------------------------------------------------------|-----|------|-----|------|------|------|-----|------|------|------|------|------|--|--|
| 0                             | barg                                                 | 5   | 6    | 7   | 8    | 9    | 10   | 11  | 12   | 13   | 14   | 15   | 16   |  |  |
| Operating pressure            | psig                                                 | 73  | 87   | 101 | 116  | 131  | 145  | 159 | 174  | 188  | 203  | 218  | 232  |  |  |
| Pressure correction factor    | Кр                                                   | 0.9 | 0.96 | 1   | 1.03 | 1.06 | 1.08 | 1.1 | 1.12 | 1.13 | 1.15 | 1.16 | 1.17 |  |  |

# AD 10 - 3000 - Non-cycling refrigeration dryers

#### **General specifications**

- ▶ Non-cycling refrigeration dryers
- ▶ Operating Pressure:
  - AD10 50: 4-16 barg / 60-232 psig
  - AD75 3000: 4-13 barg/60-188 psig
- ▶ Max. inlet temperature: 55°C / 113°F
- ▶ Flow rate: 21 5040 m³/hr / 12-2966 cfm<sup>[1]</sup>
- Pressure dew point: 3°C / 37°F (ISO 8573 - 1:2010 class 4)
- ▶ Power supply:
  - AD10 250: 230VAC 50/60 Hz
  - AD300 3000: 400V/50Hz; 380V/60Hz; 460V/60Hz
- ► Refrigerant: R134a (AD10 50); R410A (AD125 - 1250) & R452A (AD75 - 100 & AD1600 - 3000)

#### Refrigeration Dryers: AD Series (10-3000) Non cycling

#### AD 10-50



#### Features & Benefits

- Stable performance and guaranteed dew point of 3°C/37°F
- Ingeniously designed components to ensure maximum performance
  - · Hot gas bypass valve to prevent freezing at lower loads
  - Zero-loss electronic drain to prevent loss of valuable compressed air
- Brazed plate heat exchanger with integrated water separator and air-toair heat exchange
- R134a refrigerant gas: low global warming impact, zero ozone depletion
- Digital display with real-time PDP monitoring
- Easy plug-and-play installation

#### AD 75-100



#### **Features & Benefits**

- Stable performance and guaranteed dew point of 3°C/37°F
- · Ingeniously designed components to ensure maximum performance
  - · Hot gas bypass valve to prevent freezing at lower loads
  - Zero-loss electronic drain to prevent loss of valuable compressed air
- Aluminium block heat exchanger with integrated water separator and air-toair heat exchange
- Environmental safe refrigerant gases R452A
- Digital display with real-time PDP monitoring
- Easy plug-and-play installation

<sup>&</sup>lt;sup>1</sup> Flow is measured at reference conditions: ambient pressure of 1 bara and 25°C at operating pressure of 7 barg, inlet temperature 35°C



Pneumatech's AD 10-3000 non-cycling refrigeration dryers are designed to protect your compressed air system by lowering the presence of moisture in the compressed air. With a stable dew point as low as 3°C/37°F these dryers provide a highly efficient and reliable solution for your drying needs. Thanks to the new controller with digital display, real time PDP monitoring is possible. The zero-loss electronic drains avoid compressed air losses. The well-designed heat exchangers ensure maximum cooling efficiency, making the AD dryers a genuine air drying solution in industrial applications.

The AD125-1250 range is equipped with the winning combination: rotary compressors and R410A refrigerant. This combination is up to 30% more energy efficient, requires 19% less refrigerant gas and is 100% compliant with European regulation EU No 517 / 2014, hereby significantly reducing the ecological footprint of these dryers. Rotary compressors are moreover very reliable thanks to the low vibration levels and limited mechanical load. R410A guarantees stable evaporation, which makes the pressure dew point of 3°C /37°F possible.

#### AD 125-250



#### **Features & Benefits**

- Stable performance and guaranteed dew point of
- Rotary compressors and R410A refrigerant: the winning combination
  - 30% more energy efficient
  - Requires 19% less refrigerant gas
  - Extremely reliable: low vibration levels and limited mechanical load
- Ingeniously designed components to ensure maximum performance
  - · Hot gas bypass valve to prevent freezing at lower loads
  - · Zero-loss electronic drain to prevent loss of valuable compressed air
  - · Aluminium block heat exchanger with integrated water separator and air-to-air heat exchange
- Digital display with real-time PDP monitoring and voltage-free contact for remote alarm
- Easy plug-and-play installation

#### AD 300-1250



#### **Features & Benefits**

- Stable performance and guaranteed dew point of
- Rotary compressors and R410A refrigerant: the winning combination
- · 30% more energy efficient
- Requires 19% less refrigerant gas
- Extremely reliable: low vibration levels and limited mechanical load
- Ingeniously designed components to ensure maximum performance
- Hot gas bypass valve to prevent freezing at lower loads
- · Zero-loss electronic drain to prevent loss of valuable compressed air
- Aluminium block heat exchanger with integrated water separator and air-to-air heat exchange
- Advanced controlling and monitoring thanks to the controller installed
- Digital PDP display
- Remote start/stop
- Voltage-free contact for general alarm
- Easy plug-and-play installation

#### AD1600 - 3000



#### **Features & Benefits**

- Stable performance and guaranteed dew point of
- Ingeniously designed components to ensure maximum performance
  - Hot gas bypass valve to prevent freezing at lower loads
- · Zero-loss electronic drain to prevent loss of valuable compressed air
- Aluminium block heat exchanger with integrated water separator and air-to-air heat exchange
- Environmental safe refrigerant gases R452A
- · Advanced controlling and monitoring
  - Digital PDP display
  - · Remote start/stop
  - Voltage-free contact for general alarm
- Easy plug-and-play installation







**Bypass Valve** 

# AD 10 - 3000 - Non-cycling refrigeration dryers

| Technical s                                  | specif          | icatio         | ns fo          | r AD           | 10-30          | 00 50          | Hz             |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                |
|----------------------------------------------|-----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| Pneumatech<br>Variants →<br>Specifications ↓ |                 | AD<br>10       | AD<br>15       | AD<br>25       | AD<br>35       | AD<br>50       | AD<br>75       | AD<br>100      | AD<br>125      | AD<br>150      | AD<br>175      | AD<br>200      | AD<br>250      | AD<br>300      | AD<br>360      | AD<br>500      | AD<br>600      | AD<br>750      | AD<br>1000     | AD<br>1250     | AD<br>1600     | AD<br>1800     | AD<br>2500     | AD<br>3000     |
| Flow <sup>{1}</sup>                          | l/s             | 6              | 10             | 14             | 20             | 31             | 39             | 50             | 60             | 68             | 87             | 108            | 128            | 167            | 200            | 250            | 300            | 400            | 500            | 583            | 750            | 833            | 1167           | 1400           |
| Tiow                                         | m³/hr           | 21             | 36             | 51             | 72             | 110            | 141            | 180            | 216            | 246            | 312            | 390            | 462            | 600            | 720            | 900            | 1080           | 1440           | 1800           | 2100           | 2700           | 3000           | 4200           | 5040           |
| Nominal electric power                       | kW              | 0.13           | 0.16           | 0.19           | 0.27           | 0.28           | 0.61           | 0.67           | 0.65           | 0.66           | 0.83           | 1.01           | 1.09           | 1.32           | 1.63           | 1.89           | 2.11           | 3.26           | 3.89           | 4.75           | 6.71           | 6.80           | 10.20          | 12.30          |
| Power Supply /<br>Voltage / Phase            |                 | 230<br>50<br>1 | 400<br>50<br>3 |
| Max                                          | barg            | 16             | 16             | 16             | 16             | 16             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             | 13             |
| Operating<br>Pressure                        | psig            | 232            | 232            | 232            | 232            | 232            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            | 188            |
| Refrigerant Gas                              |                 | R134a          | R134a          | R134a          | R134a          | R134a          | R452A          | R452A          | R410A          | R452A          | R452A          | R452A          | R452A          |
| Inlet and Outlet<br>Connections              | inches /<br>DIN | R3/4"          | R3/4"          | R3/4"          | R3/4"          | R3/4"          | R1"            | R1"            | R1<br>1/2"     | R1<br>1/2"     | R1<br>1/2"     | R1<br>1/2"     | R1<br>1/2"     | R2"            | R2"            | R2"            | R2"            | R3"            | R3"            | R3"            | DIN<br>125     | DIN<br>125     | DIN<br>125     | DIN<br>125     |
|                                              | L (mm)          | 350            | 350            | 350            | 350            | 350            | 370            | 370            | 460            | 460            | 460            | 580            | 580            | 735            | 735            | 735            | 735            | 1020           | 1020           | 1020           | 1020           | 1020           | 1020           | 1020           |
|                                              | L (inch)        | 13.8           | 13.8           | 13.8           | 13.8           | 13.8           | 16.6           | 16.6           | 18.1           | 18.1           | 18.1           | 22.8           | 22.8           | 28.9           | 28.9           | 28.9           | 28.9           | 40.2           | 40.2           | 40.2           | 40.2           | 40.2           | 40.2           | 40.2           |
|                                              | W (mm)          | 511            | 511            | 511            | 511            | 511            | 515            | 515            | 575            | 575            | 575            | 604            | 604            | 952            | 952            | 952            | 952            | 1082           | 1082           | 1082           | 1123           | 2099           | 2099           | 2099           |
| Dimensions                                   | W<br>(inch)     | 20.1           | 20.1           | 20.1           | 20.1           | 20.1           | 20.3           | 20.3           | 22.6           | 22.6           | 22.6           | 23.8           | 23.8           | 37.5           | 37.5           | 37.5           | 37.5           | 42.6           | 42.6           | 42.6           | 44.2           | 42.6           | 42.6           | 42.6           |
|                                              | H (mm)          | 484            | 484            | 484            | 484            | 484            | 764            | 764            | 789            | 789            | 789            | 899            | 899            | 1012           | 1012           | 1012           | 1012           | 1535           | 1535           | 1535           | 1551           | 1560           | 1560           | 1560           |
|                                              | H (inch)        | 19.1           | 19.1           | 19.1           | 19.1           | 19.1           | 30             | 30             | 31.1           | 31.1           | 31.1           | 35.4           | 35.4           | 39.8           | 39.8           | 39.8           | 39.8           | 60.4           | 60.4           | 60.4           | 61.1           | 61.4           | 61.4           | 61.4           |
| Weight                                       | kg              | 19             | 19             | 20             | 25             | 27             | 44             | 44             | 53             | 60             | 65             | 80             | 80             | 128            | 146            | 158            | 165            | 325            | 335            | 350            | 380            | 550            | 600            | 650            |
| Weight                                       | Lbs             | 42             | 42             | 44             | 55             | 60             | 97             | 97             | 117            | 132            | 143            | 176            | 176            | 282            | 322            | 348            | 364            | 716            | 738            | 771            | 838            | 1212           | 1322           | 1433           |

<sup>1.</sup> Flow is measured at reference conditions: ambient pressure of 1 bara and 25°C at operating pressure of 7 barg, inlet temperature 35°C.

2. 380V/60Hz and 460V/60Hz variants are also available for the AD300-3000 range. Please refer to the datasheets or consult Pneumatech for technical data.

| Correction factors for ambient temperature |       |      |      |      |      |      |               |  |  |  |  |  |  |
|--------------------------------------------|-------|------|------|------|------|------|---------------|--|--|--|--|--|--|
|                                            | °C    | 25   | 30   | 35   | 40   | 45   |               |  |  |  |  |  |  |
| Ambient temperature                        | IZt b | 1.00 | 0.92 | 0.84 | 0.80 | 0.74 | (AD 10-250)   |  |  |  |  |  |  |
|                                            | Ktmb  | 1.00 | 0.91 | 0.81 | 0.72 | 0.62 | (AD 300-3000) |  |  |  |  |  |  |

| Correction factors for |    |      |      |      |      |      |      |               |
|------------------------|----|------|------|------|------|------|------|---------------|
|                        | °C | 30   | 35   | 40   | 45   | 50   | 55   |               |
| Inlet temperature      | Kt | 1.24 | 1.00 | 0.82 | 0.69 | 0.58 | 0.45 | (AD 10-250)   |
|                        |    | 1.00 | 1.00 | 0.82 | 0.69 | 0.58 | 0.49 | (AD 300-3000) |

| Correction factors for compressed air inlet pressure |      |      |      |      |      |      |      |      |      |      |      |      |      |      |               |
|------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---------------|
| Operating pressure                                   | barg | 4    | 5    | 6    | 7    | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   |               |
|                                                      | 1,   | 0.80 | 0.90 | 0.96 | 1.00 | 1.03 | 1.06 | 1.08 | 1.10 | 1.12 | 1.13 | 1.15 | 1.16 | 1.15 | (AD 10-250)   |
|                                                      | Кр   | 0.80 | 0.90 | 0.97 | 1.00 | 1.03 | 1.05 | 1.07 | 1.09 | 1.11 | 1.12 | -    | -    | -    | (AD 300-3000) |

# Anti-corrosion treatment (available for all refrigerant dryers)

| Technical specifications              |                                      |
|---------------------------------------|--------------------------------------|
| Coating type                          | Aluminum pigmented polyurethane      |
| Color                                 | Champagne                            |
| Pretreatment                          | Degreasing                           |
| Temperature Range (dry)               | -20 to 150°C (-4° to 302°F)          |
| Substrates                            | Aluminum and Copper                  |
| ASTM B117                             | 4000+ hours(neutral-salt spray test) |
| Kesternich (2.0 ltr SO <sub>2</sub> ) | 80 cycles                            |
| Layer Thickness                       | 25-30 μm (1 mil)                     |
| UV Resistance                         | Excellent                            |
| Adhesion (cross hatch)                | 0 (European) 5b (USA)                |
| Chemical Resistance                   | Excellent                            |

# Coating resistance of some typical corrosive gas vapors (based on exposure temperature of 20°C/68°F) – maximum concentrations

| Chlorine        | 64 ppm  | Ethanol        | 320 ppm |
|-----------------|---------|----------------|---------|
| Ammonia         | 160 ppm | Sulphuric acid | 320 ppm |
| Phosphoric acid | 320 ppm | Seawater       | 640 ppm |









#### **Problem**

Refrigerant dryers can be subjected to severe corrosion when placed in environments rich of e.g ammonia and sulfurs, or close to the seaside. In these cases incompatible metals like copper will be affected since the condenser-fan is blowing a high volume of polluted air through the dryer. Corrosion and pollution of condensers will directly impact the dryer performance. Corrosion can even lead to leaks in the condenser and refrigeration piping.



#### Solution

Pneumatech offers a long-lasting corrosion protection to the condenser and the refrigerant piping without affecting heat transfer and pressure drop. The heat conductive pigmentation in the coating is oriented in such a way that it creates a very high chemical resistance at a low layer thickness. Therefore it is considered the best available option to prevent refrigeration dryer failure and unnecessary energy consumption.

# AC 15 - 600 - Cycling refrigeration dryers

#### **Features & Benefits**

- ▶ Premium energy efficiency
  - Energy-saving & flow control: adapt energy consumption to the real load
  - Lowest pressure drop over heat exchanger and air piping
  - · Zero-loss drains
- Strong performance & reliability
  - Stable pressure dew point as low as 3°C
  - Guaranteed drying performance in wide range of ambient temperatures
- Optimal control and monitoring
  - · Energy-saving control
  - Voltage-free contact for remote alarm
  - · Auto-restart after voltage-failure
  - Communication via industrial protocols like Modbus, Profibus or Ethernet/IP (for AC250-600 only)
- ▶ Easy installation and maintenance at low cost
  - · Pipe connections on top
  - Long service intervals
  - Easy access to key components



#### **General Specifications**

- ▶ AC refrigeration dryers: cycling type
- Operating pressure: 4-16 barg/58-232 psig (4-14 barg/ 58-189 psig from AC 125 onwards)
- ► Max. inlet temperature: 60°C / 140°F
- ► Flow rate : 22-1026 m³/hr (13-604 cfm)<sup>{1}</sup>
- Pressure dew point: 3°C / 37°F (ISO 8573-1:2010 class 4)
- ▶ Power supply: 115/230VAC 50/60 Hz
- ► Refrigerant: R134a (AC 15-100), R410a (AC 125-600)







Electric panel protection IP 54

 $<sup>^{\</sup>rm I}$  Flow is measured at reference conditions: ambient pressure of 1 bara and 25°C at operating pressure of 7 barg, inlet temperature 35°C .



Pneumatech's AC range offers premium refrigeration drying technology at the lowest operational costs. All AC dryers are equipped with our proprietary energy saving algorithm, which adapts the energy consumption to the real load by continuously monitoring the ambient temperature and the pressure dewpoint. In this way, the risk of downstream corrosion is reduced to zero at all times. When there is less cooling needed, the refrigerant compressor stops and power consumption is significantly reduced, with savings up to 50%.

AC250-600 dryers are also equipped with a flow switch which detects whether there is flow going through the dryer; and shuts down the refrigerant compressor when there is no flow

(even if the energy saving algorithm would not be activated). To make these energy saving functionalities work, the AC range makes use of advanced controllers, which communicate through voltage-free contacts (for AC15-200) or industrial protocols like Modbus, Profibus or Ethernet/IP (for AC250-600).

Premium energy efficiency is also guaranteed thanks to low pressure drops over the heat exchangers, zero-loss drains and our winning combination: rotary compressors and R410A refrigerant on AC125-600. This combination is up to 30% more energy efficient, requires 19% less refrigerant gas and is 100% compliant with European regulation EU No 517 / 2014.

| Technical s                                | Technical specifications for AC 15-600 50Hz Aircooled |                   |                   |                   |                   |                   |                   |                 |                 |                 |                 |                 |                    |                    |                    |                    |                    |                    |
|--------------------------------------------|-------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| Pneumatech<br>Variant →<br>Specifications↓ | Units                                                 | AC-15             | AC-20             | AC-30             | AC-40             | AC-50             | AC-65             | AC-85           | AC-100          | AC-125          | AC-150          | AC-200          | AC-250             | AC-300             | AC-350             | AC-450             | AC-500             | AC-600             |
| Flow <sup>{1}</sup>                        | l/s                                                   | 6                 | 10                | 15                | 20                | 25                | 30                | 40              | 50              | 60              | 70              | 95              | 120                | 150                | 185                | 220                | 245                | 285                |
| 1 low-                                     | m³/hr                                                 | 22                | 36                | 54                | 72                | 90                | 108               | 144             | 180             | 216             | 252             | 342             | 432                | 540                | 666                | 792                | 882                | 1026               |
| Power                                      | kW                                                    | 0.2               | 0.2               | 0.33              | 0.41              | 0.41              | 0.41              | 0.6             | 0.5             | 0.7             | 0.7             | 0.89            | 1                  | 1                  | 1.4                | 1.9                | 1.9                | 2.2                |
| consumption                                | hp                                                    | 0.27              | 0.27              | 0.44              | 0.55              | 0.55              | 0.55              | 0.80            | 0.67            | 0.94            | 0.94            | 1.19            | 1.34               | 1.34               | 1.88               | 2.55               | 2.55               | 2.95               |
| Pressure drop                              | barg                                                  | 0.07              | 0.11              | 0.12              | 0.12              | 0.17              | 0.25              | 0.2             | 0.2             | 0.21            | 0.28            | 0.25            | 0.11               | 0.15               | 0.22               | 0.12               | 0.18               | 0.22               |
| over dryer                                 | psig                                                  | 1.02              | 1.60              | 1.74              | 1.74              | 2.47              | 3.63              | 2.90            | 2.90            | 3.05            | 4.06            | 3.63            | 1.59               | 2.18               | 3.19               | 1.74               | 2.61               | 3.19               |
| Refrigerant type                           |                                                       | R134a             | R134a             | R134a             | R134a             | R134a             | R134a             | R134a           | R134a           | R410A           | R410A           | R410A           | R410A              | R410A              | R410A              | R410A              | R410A              | R410A              |
|                                            | L (mm)                                                | 496               | 496               | 496               | 496               | 496               | 496               | 716             | 716             | 792             | 792             | 792             | 882                | 882                | 948                | 948                | 948                | 948                |
|                                            | L (inch)                                              | 19.5              | 19.5              | 19.5              | 19.5              | 19.5              | 19.5              | 28.2            | 28.2            | 31.2            | 31.2            | 31.2            | 34.7               | 34.7               | 37.3               | 37.3               | 37.3               | 37.3               |
| Dimensions                                 | W (mm)                                                | 377               | 377               | 377               | 377               | 377               | 377               | 380             | 380             | 500             | 500             | 500             | 661                | 661                | 802                | 802                | 802                | 802                |
| Dimensions                                 | W (inch)                                              | 14.8              | 14.8              | 14.8              | 14.8              | 14.8              | 14.8              | 15.0            | 15.0            | 19.7            | 19.7            | 19.7            | 26.0               | 26.0               | 31.6               | 31.6               | 31.6               | 31.6               |
|                                            | H (mm)                                                | 461               | 461               | 461               | 461               | 461               | 461               | 676             | 676             | 680             | 680             | 680             | 1015               | 1015               | 1026               | 1026               | 1026               | 1026               |
|                                            | H (inch)                                              | 18.1              | 18.1              | 18.1              | 18.1              | 18.1              | 18.1              | 26.6            | 26.6            | 26.8            | 26.8            | 26.8            | 40.0               | 40.0               | 40.4               | 40.4               | 40.4               | 40.4               |
| Inlet and Outlet<br>Connections            |                                                       | ISO7-<br>R3/4"(m) | ISO7-<br>R3/4"(m) | ISO7-<br>R3/4"(m) | ISO7-<br>R3/4"(m) | ISO7-<br>R3/4"(m) | ISO7-<br>R3/4"(m) | ISO7-<br>R1"(m) | ISO7-<br>R1"(m) | ISO7-<br>R1"(m) | ISO7-<br>R1"(m) | ISO7-<br>R1"(m) | ISO7-R1<br>1/2"(m) | ISO7-R1<br>1/2"(m) | ISO7-R2<br>1/2"(m) | ISO7-R2<br>1/2"(m) | ISO7-R2<br>1/2"(m) | ISO7-R2<br>1/2"(m) |
| Weight                                     | kg                                                    | 27                | 27                | 32                | 34                | 34                | 34                | 56              | 57              | 82.4            | 82.4            | 109.4           | 170                | 170                | 185                | 197                | 197                | 197                |
| vveigni                                    | lbs                                                   | 60                | 60                | 71                | 75                | 75                | 75                | 123             | 126             | 182             | 182             | 241             | 375                | 375                | 408                | 434                | 434                | 434                |

<sup>1.</sup> Flow is measured at reference conditions: ambient pressure of 1 bara and 25°C at operating pressure of 7 barg, inlet temperature 35°C.

| C   25   30   35   40   45   50   55   60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |        |      |      |      |      |      |      |      |      |      |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|------|------|------|------|------|------|------|------|------|--|--|--|--|
| Temperature         °F         77         86         95         104         113         122         131         140           3 °C         37 °F         1,2         1,1         1         0,85         0,72         0,6         0,49         0,37           5 °C         41 °F         1,35         1,23         1,11         0,94         0,8         0,67         0,55         0,42           PDP         7 °C         45 °F         1,5         1,35         1,22         1,02         0,88         0,75         0,61         0,47           10 °C         50 °F         1,72         1,54         1,38         1,15         1         0,86         0,7         0,54 |        |        |      |      |      |      |      |      |      |      |      |  |  |  |  |
| PDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tompor | roturo | °C   | 25   | 30   | 35   | 40   | 45   | 50   | 55   | 60   |  |  |  |  |
| PDP 7°C 45°F 1,72 1,54 1,38 1,15 1 0,86 0,7 0,55 1,72 1,54 1,38 1,15 1 0,86 0,7 0,55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | remper | aluie  | °F   | 77   | 86   | 95   | 104  | 113  | 122  | 131  | 140  |  |  |  |  |
| PDP 7°C 45°F 1,5 1,35 1,22 1,02 0,88 0,75 0,61 0,47 10°C 50°F 1,72 1,54 1,38 1,15 1 0,86 0,7 0,54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 3°C    | 37°F | 1,2  | 1,1  | 1    | 0,85 | 0,72 | 0,6  | 0,49 | 0,37 |  |  |  |  |
| 10°C 50°F 1,72 1,54 1,38 1,15 1 0,86 0,7 0,54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 5°C    | 41°F | 1,35 | 1,23 | 1,11 | 0,94 | 0,8  | 0,67 | 0,55 | 0,42 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PDP    | 7°C    | 45°F | 1,5  | 1,35 | 1,22 | 1,02 | 0,88 | 0,75 | 0,61 | 0,47 |  |  |  |  |
| 15°C 59°F 2,11 1,89 1,68 1,43 1,23 1,03 0,83 0,62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 10°C   | 50°F | 1,72 | 1,54 | 1,38 | 1,15 | 1    | 0,86 | 0,7  | 0,54 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 15°C   | 59°F | 2,11 | 1,89 | 1,68 | 1,43 | 1,23 | 1,03 | 0,83 | 0,62 |  |  |  |  |

|        | K1 Flow correction factors due to compressed air inlet temperature and/or pressure dewpoint (PDP) - 60Hz units |      |      |      |      |      |      |      |      |      |  |  |  |
|--------|----------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|--|--|--|
| Tamma  |                                                                                                                | °C   | 25   | 30   | 35   | 38   | 45   | 50   | 55   | 60   |  |  |  |
| Temper | alure                                                                                                          | °F   | 77   | 86   | 95   | 100  | 113  | 122  | 131  | 140  |  |  |  |
|        | 4°C                                                                                                            | 39°F | 1,14 | 1,09 | 1,03 | 1    | 0,8  | 0,67 | 0,53 | 0,4  |  |  |  |
| PDP    | 7°C                                                                                                            | 45°F | 1,27 | 1,22 | 1,14 | 1,09 | 0,88 | 0,74 | 0,59 | 0,44 |  |  |  |
| PDP    | 10°C                                                                                                           | 50°F | 1,4  | 1,35 | 1,24 | 1,18 | 0,96 | 0,8  | 0,65 | 0,49 |  |  |  |
|        | 15°C                                                                                                           | 59°F | 1,63 | 1,55 | 1,41 | 1,32 | 1,08 | 0,91 | 0,74 | 0,56 |  |  |  |

| K2 Flow correction factors due to compressed air inlet pressure (g) |      |      |      |      |     |      |      |      |      |      |  |  |
|---------------------------------------------------------------------|------|------|------|------|-----|------|------|------|------|------|--|--|
|                                                                     | barg | 4    | 5    | 6    | 7   | 8    | 10   | 12   | 14   | 16   |  |  |
| Air inlet pressure                                                  | psig | 58   | 72   | 87   | 101 | 116  | 145  | 174  | 203  | 232  |  |  |
|                                                                     |      | 0,74 | 0,84 | 0,92 | 1   | 1,05 | 1,15 | 1,25 | 1,31 | 1,35 |  |  |

| Flow correction factor due to ambient temperature - 50Hz units |    |      |      |      |      |      |      |  |  |  |  |
|----------------------------------------------------------------|----|------|------|------|------|------|------|--|--|--|--|
|                                                                | °C | 25   | 30   | 35   | 40   | 45   | 50   |  |  |  |  |
| Temperature                                                    | °F | 77   | 86   | 95   | 104  | 113  | 122  |  |  |  |  |
|                                                                |    | 1,00 | 0,95 | 0,88 | 0,81 | 0,74 | 0,67 |  |  |  |  |

| Flow correction factor due to ambient temperature - 60Hz units |    |      |      |      |      |      |      |  |  |  |  |
|----------------------------------------------------------------|----|------|------|------|------|------|------|--|--|--|--|
|                                                                | °C | 25   | 30   | 35   | 38   | 45   | 50   |  |  |  |  |
| Temperature                                                    | °F | 77   | 86   | 95   | 100  | 113  | 122  |  |  |  |  |
|                                                                |    | 1,10 | 1,06 | 1,02 | 1,00 | 0,93 | 0,88 |  |  |  |  |

## AC 650 - 2100 - Large cycling refrigeration dryers (including VSD solutions)

#### Features & Benefits

- Premium energy efficiency
  - · Energy-saving & flow control: adapt energy consumption to the real load
  - Variable speed range: exact match between energy consumption and actual demand (available for AC 1600-2100)
  - Lowest pressure drop over heat exchanger and air piping
  - · Zero-loss drains
- Strong performance & reliability
  - Stable pressure dew point as low as 3°C
  - Rotary refrigerant compressors: limited mechanical load & low vibrations
  - · Guaranteed drying performance in wide range of ambient temperatures
  - · Refrigeration cycle optimized in all conditions thanks to automatic expansion valve & electronic hot gas bypass valve
- Air-cooled as well as water-cooled versions available
- Optimal control and monitoring thanks to the Purelogic<sup>™</sup> controller
  - Communication via industrial protocols like Modbus, Profibus or Ethernet/IP
  - Internet-based visualization
- ▶ Easy maintenance at low cost
  - · Pipe connections on top
  - Long service intervals
  - · Easy access to key components

#### **General Specifications**

- AC refrigeration dryers: cycling type including VSD option (only for AC 1600-2100)
- Operating Pressure: 4-14 barg/ 58-189 psig
- Max. temperature: 50°C / 122°F
- ► Flow rate: 1116-3636 m³/hr (657-2141 cfm)<sup>{1}</sup>
- ▶ Pressure dew point: 3°C / 37°F
- Power supply: 400V/50Hz; 380V/60Hz; 400-460V/60Hz
- ▶ Refrigerant: R410a
- Cooling type: Air-cooled and water-cooled



#### **Options**



IP 54 protection (only for 650-1050; standard on AC1250-2100)

<sup>&</sup>lt;sup>1</sup> Flow is measured at reference conditions: ambient pressure of 1 bara and 25°C at operating pressure of 7 barg, inlet temperature 35°C



AC 650-2100 is Pneumatech's premium refrigeration dryer range at higher flows: from 1120 up to 3636  $m^3$ /hr (657-2141 cfm).

As in the small AC range, operating costs are significantly reduced thanks to the energy saving and flow switch algorithms, the zero-loss drains, the low pressure drop over the heat exchangers and the combination of rotary compressors and R410A refrigerant. The refrigeration cycle is further optimized in all working conditions by making use of the automatic expansion valve & electronic hot gas bypass valve.

From AC1600 onwards, dedicated variable speed (VSD) variants have been added to the range. The VSD controller incorporated

in these dryers matches the energy consumption to the actual compressed air demand. This reduces energy used by as much as 70%, compared to conventional dryers. It works by varying the speed of the compressor, hereby ensuring a stable dew point.

The Purelogic<sup>™</sup> is installed as standard on all dryers: it ensures maximum reliability by monitoring the most important parameters of the dryer and offers impressive control and monitoring capabilities, like internet-based visualization.

The entire range is available in both air-cooled and water-cooled versions.

| pecific  | cation                                                                           | s for A   | C650-                                                                                                                                                                                                                                                                            | 2100       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |            |                   |           |           |            |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                        |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |                                                                  |
|----------|----------------------------------------------------------------------------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|-------------------|-----------|-----------|------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|
|          |                                                                                  |           |                                                                                                                                                                                                                                                                                  | Air C      | ooled (ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ncluding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | VSD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |            |                   |           |           |            | Water 0    | Cooled (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | includin                                                                                                                                                               | g VSD)                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                 |                                                                  |
| Units    | AC<br>650                                                                        | AC<br>850 | AC<br>1050                                                                                                                                                                                                                                                                       | AC<br>1250 | AC<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AC<br>1600<br>VSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AC<br>1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AC<br>1800<br>VSD | AC<br>2100 | AC<br>2100<br>VSD | AC<br>650 | AC<br>850 | AC<br>1050 | AC<br>1250 | AC<br>1600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AC<br>1600<br>VSD                                                                                                                                                      | AC<br>1800                                                                 | AC<br>1800<br>VSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AC<br>2100                                                      | AC<br>2100<br>VSD                                                |
| l/s      | 310                                                                              | 410       | 510                                                                                                                                                                                                                                                                              | 610        | 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 870               | 1010       | 1010              | 310       | 410       | 510        | 610        | 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 760                                                                                                                                                                    | 870                                                                        | 870                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1010                                                            | 1010                                                             |
| m³/hr    | 1116                                                                             | 1476      | 1836                                                                                                                                                                                                                                                                             | 2196       | 2736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3132              | 3636       | 3636              | 1116      | 1476      | 1837       | 2196       | 2736                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2736                                                                                                                                                                   | 3132                                                                       | 3132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3636                                                            | 3636                                                             |
| kW       | 2.80                                                                             | 3         | 4.5                                                                                                                                                                                                                                                                              | 4.80       | 5.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.8               | 7.40       | 6.6               | 2         | 2.4       | 4.1        | 3.10       | 3.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3                                                                                                                                                                    | 4.50                                                                       | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.10                                                            | 5.6                                                              |
| hp       | 3.75                                                                             | 4.02      | 6.03                                                                                                                                                                                                                                                                             | 6.40       | 7.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.8               | 9.90       | 8.8               | 2.68      | 3.22      | 5.5        | 4.20       | 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.4                                                                                                                                                                    | 6.00                                                                       | 5.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.80                                                            | 7.5                                                              |
| mBar     | 230                                                                              | 210       | 200                                                                                                                                                                                                                                                                              | 170        | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 140               | 170        | 170               | 230       | 210       | 200        | 170        | 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 90                                                                                                                                                                     | 140                                                                        | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 170                                                             | 170                                                              |
| psig     | 3.3                                                                              | 3.0       | 2.9                                                                                                                                                                                                                                                                              | 2.5        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0               | 2.5        | 2.5               | 3.3       | 3         | 2.9        | 2.5        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 131                                                                                                                                                                    | 2.0                                                                        | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.5                                                             | 2.5                                                              |
| kg       | R410a                                                                            | R410a     | R410a                                                                                                                                                                                                                                                                            | R410a      | R410a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R410a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R410a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | R410a             | R410a      | R410a             | R410a     | R410a     | R410a      | R410a      | R410a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R410a                                                                                                                                                                  | R410a                                                                      | R410a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | R410a                                                           | R410a                                                            |
| Inch/DN  | G3"                                                                              | G3"       | G3"                                                                                                                                                                                                                                                                              | DN100      | DN100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DN100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DN150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DN150             | DN150      | DN150             | G3"       | G3"       | G3"        | DN100      | DN100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DN100                                                                                                                                                                  | DN150                                                                      | DN150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DN150                                                           | DN150                                                            |
| L (mm)   | 986                                                                              | 1250      | 1525                                                                                                                                                                                                                                                                             | 1040       | 1245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1245              | 1580       | 1580              | 986       | 1250      | 1250       | 1245       | 1245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1580                                                                                                                                                                   | 1245                                                                       | 1580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1245                                                            | 1580                                                             |
| L (inch) | 38.9                                                                             | 49.2      | 60.0                                                                                                                                                                                                                                                                             | 40.9       | 49.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 49.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 49.0              | 62.2       | 62.2              | 38.9      | 49.2      | 49.2       | 49.0       | 49.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62.2                                                                                                                                                                   | 49.0                                                                       | 62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 49.0                                                            | 62.2                                                             |
| W (mm)   | 850                                                                              | 850       | 850                                                                                                                                                                                                                                                                              | 1060       | 1060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1060              | 1060       | 1060              | 850       | 850       | 850        | 1060       | 1060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1060                                                                                                                                                                   | 1060                                                                       | 1060                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1060                                                            | 1060                                                             |
| W (inch) | 33.5                                                                             | 33.5      | 33.5                                                                                                                                                                                                                                                                             | 41.7       | 41.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.7              | 41.7       | 41.7              | 33.5      | 33.5      | 33.5       | 41.7       | 41.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.7                                                                                                                                                                   | 41.7                                                                       | 41.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41.7                                                            | 41.7                                                             |
| H (mm)   | 1190                                                                             | 1375      | 1375                                                                                                                                                                                                                                                                             | 1580       | 1580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1580              | 1580       | 1580              | 1190      | 1375      | 1375       | 1580       | 1580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1580                                                                                                                                                                   | 1580                                                                       | 1580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1580                                                            | 1580                                                             |
| H (inch) | 46.9                                                                             | 54.1      | 54.1                                                                                                                                                                                                                                                                             | 62.2       | 62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 62.2              | 62.2       | 62.2              | 46.9      | 54.1      | 54.1       | 62.2       | 62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 62.2                                                                                                                                                                   | 62.2                                                                       | 62.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62.2                                                            | 62.2                                                             |
| kg       | 200                                                                              | 240       | 310                                                                                                                                                                                                                                                                              | 320        | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400               | 460        | 460               | 180       | 240       | 260        | 350        | 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 410                                                                                                                                                                    | 370                                                                        | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 380                                                             | 410                                                              |
| lbs      | 441                                                                              | 529       | 683                                                                                                                                                                                                                                                                              | 705        | 838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 838                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 882               | 1014       | 1014              | 397       | 529       | 573        | 772        | 794                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 904                                                                                                                                                                    | 816                                                                        | 904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 838                                                             | 904                                                              |
|          | Units  I/s m³/hr kW hp mBar psig kg Inch/DN L (inch) W (mm) W (inch) H (inch) kg | Units     | Units AC 850 AC 850  Vs 310 410  m³/hr 1116 1476  kW 2.80 3  hp 3.75 4.02  mBar 230 210  psig 3.3 3.0  kg R410a R410a  Rh10a R410a  Chinch/DN G3" G3"  L (mm) 986 1250  L (inch) 38.9 49.2  W (mm) 850 850  W (inch) 33.5 33.5  H (mm) 1190 1375  H (inch) 46.9 54.1  kg 200 240 | Units      | Units         AC 650         AC 850         AC 1050         AC 1250           Vs         310         410         510         610           m³/hr         1116         1476         1836         2196           kW         2.80         3         4.5         4.80           hp         3.75         4.02         6.03         6.40           mBar         230         210         200         170           psig         3.3         3.0         2.9         2.5           kg         R410a         R410a         R410a         R410a           nnch/DN         G3"         G3"         G3"         DN100           L (mm)         986         1250         1525         1040           L (inch)         38.9         49.2         60.0         40.9           W (mm)         850         850         850         1060           W (inch)         33.5         33.5         33.5         41.7           H (inch)         46.9         54.1         54.1         62.2           kg         200         240         310         320 | Mir Cooled (in Units 650 850 1050 1250 1600  Ws 310 410 510 610 760  m³/hr 1116 1476 1836 2196 2736  kW 2.80 3 4.5 4.80 5.30  hp 3.75 4.02 6.03 6.40 7.10  mBar 230 210 200 170 170  psig 3.3 3.0 2.9 2.5 2.5  kg R410a R410a R410a R410a R410a R410a  hnch/DN G3" G3" G3" DN100 DN100  L (mm) 986 1250 1525 1040 1245  L (inch) 38.9 49.2 60.0 40.9 49.0  W (mm) 850 850 850 1060 1060  W (inch) 33.5 33.5 33.5 41.7 41.7  H (mm) 1190 1375 1375 1580 1580  H (inch) 46.9 54.1 54.1 62.2 62.2  kg 200 240 310 320 380 | Honey Department of the property of the prope | Units             | Name       | Units             | Units     | Units     | Units      | Units      | Units AC 850 AC 1050 1250 1600 1760 1800 1800 1800 AC 1000 1800 1010 1010 310 410 510 610 610 610 760 760 870 870 1010 1010 310 410 510 610 610 760 870 870 1010 1010 310 410 510 610 610 760 870 870 870 1010 1010 310 410 510 610 610 760 870 870 870 870 1010 1010 310 410 510 610 610 760 760 870 870 870 1010 1010 310 410 510 610 760 760 870 870 870 870 1010 1010 310 410 510 610 760 760 870 870 870 870 1010 1010 310 410 510 610 760 760 760 870 870 760 870 760 870 760 870 760 870 760 870 760 870 760 870 760 870 760 870 760 870 760 870 760 760 870 760 870 760 760 870 760 760 870 760 760 870 760 760 870 760 760 870 760 760 760 760 760 760 870 760 760 760 760 760 760 760 760 760 7 | Units AC AC AC 1050 1250 1600 1600 1800 VSD 1010 1010 1010 310 410 510 610 760 1600 1800 1800 1800 1010 1010 310 410 510 610 760 1600 1800 1800 1800 1800 1800 1800 18 | Units AC 850 AC 1050 AC 1250 1600 (1600 1800 1800 1800 1010 1010 1010 1010 | Value   Val | Units AC 850 AC 1050 150 160 160 160 160 1800 1800 1800 1800 18 | Units AC 850 AC 1050 1250 1600 1600 1800 1800 1800 1800 1800 180 |

- 1. Flow is measured at reference conditions: ambient pressure of 1 bara and 25°C at operating pressure of 7 barg, inlet temperature 35°C
- 2. Power consumption of the units are specified for max ambient tepertaure of 40°C. In case of higher ambient temperatures contact Pneumatech.

| <b>-</b> |        | °C   | 25   | 30   | 35   | 40   | 45   | 50   | 55   | 60   |
|----------|--------|------|------|------|------|------|------|------|------|------|
| Tempe    | rature | °F   | 77   | 86   | 95   | 104  | 113  | 122  | 131  | 140  |
|          | 3°C    | 37°F | 1,2  | 1,1  | 1    | 0,85 | 0,72 | 0,6  | 0,49 | 0,37 |
|          | 5°C    | 41°F | 1,35 | 1,23 | 1,11 | 0,94 | 0,8  | 0,67 | 0,55 | 0,42 |
| PDP      | 7°C    | 45°F | 1,5  | 1,35 | 1,22 | 1,02 | 0,88 | 0,75 | 0,61 | 0,47 |
|          | 10°C   | 50°F | 1,72 | 1,54 | 1,38 | 1,15 | 1    | 0,86 | 0,7  | 0,54 |
|          | 15°C   | 59°F | 2,11 | 1,89 | 1,68 | 1,43 | 1,23 | 1,03 | 0,83 | 0,62 |

| K1 Flow o | orrection fa | ctors due t | o compress | sed air inlet | temperatu | re and/or p | ressure dev | wpoint (PDI | ⊃)- <b>60Hz</b> u | nits |
|-----------|--------------|-------------|------------|---------------|-----------|-------------|-------------|-------------|-------------------|------|
| T         |              | °C          | 25         | 30            | 35        | 38          | 45          | 50          | 55                | 60   |
| Tempe     | rature       | °F          | 77         | 86            | 95        | 100         | 113         | 122         | 131               | 140  |
|           | 4°C          | 39°F        | 1,14       | 1,09          | 1,03      | 1           | 0,8         | 0,67        | 0,53              | 0,4  |
| DDD       | 7°C          | 45°F        | 1,27       | 1,22          | 1,14      | 1,09        | 0,88        | 0,74        | 0,59              | 0,44 |
| PDP       | 10°C         | 50°F        | 1,4        | 1,35          | 1,24      | 1,18        | 0,96        | 0,8         | 0,65              | 0,49 |
|           | 15°C         | 59°F        | 1,63       | 1,55          | 1,41      | 1,32        | 1,08        | 0,91        | 0,74              | 0,56 |

| K2 Flow cor        | rection f | actor due | to compre | ssed air ir | ılet pressu | re (g) |      |      |      |
|--------------------|-----------|-----------|-----------|-------------|-------------|--------|------|------|------|
|                    | barg      | 4         | 5         | 6           | 7           | 8      | 10   | 12   | 14   |
| Air inlet pressure | psig      | 58        | 72        | 87          | 101         | 116    | 145  | 174  | 203  |
| •                  |           | 0,74      | 0,84      | 0,92        | 1           | 1,05   | 1,15 | 1,25 | 1,31 |

| Flow correction factor d | ue to ambie | ent tempera | ature or coc | oling water t | emperatur  | e - 50Hz ur | nits |
|--------------------------|-------------|-------------|--------------|---------------|------------|-------------|------|
|                          | °C          | 25          | 30           | 35            | 40         | 45          | 50   |
| Temperature              | °F          | 77          | 86           | 95            | 104        | 113         | 122  |
|                          |             | 1,00        | 0,95         | 0,88          | 0,81       | 0,74        | 0,67 |
| Flow correction factor d | ue to ambie | ent tempera | ature or coc | oling water t | emperature | e - 60Hz ur | nits |
|                          | °C          | 25          | 30           | 35            | 38         | 45          | 50   |

86

1,06

95

1,02

100

1,00

113

122

0,88

77

1,10

۰F

Temperature

## AC HP 20 - 2120 - High-pressure refrigeration dryers

#### **Features & Benefits**

- ▶ Unique, mono block heat exchanger
  - Heavy duty steel construction makes heat exchangers reliable and long lasting for high pressure applications
  - Specially designed louvered copper plates to deliver state-of-art performance and great cooling efficiency
  - Compact design
- Premium energy efficiency
  - Low pressure drops resulting in energy cost savings
  - Air/air economizer reduces the energy requirements by 58 %
- Efficient integrated water separator
  - Prevents re-evaporation of water after separation
  - Guaranteed separation up to 150% of the nominal flow
- Reliable and safe operation thanks to carefully chosen regulation instruments
  - Thermostatic expansion valve eliminates risk of liquid knock in the refrigerant compressor
  - Hot gas bypass valve keeps evaporation pressure steady
  - Thermo and pressure switches guarantee reliable and efficient working

#### **General Specifications**

- High pressure refrigeration dryers
- Max. pressure: 50 barg / 725 psig
   Pressure up to 350 barg / 5075 psig
   available on request
- ► Max. temperature: 45°C / 113°F
- Flow rate: 33 to 3600 m³/hr (19-2120 cfm)<sup>{1}</sup>
- Pressure dew point: 3°C/37°F (ISO 8573-1:2010 class 4)
- Power supply: 230/400VAC 50Hz (60Hz version on request)
- Refrigerant: R134a (ACHP 20-1100) or R404a (ACHP 1360-2120)
- Cooling variants: Air-cooled (standard) or water-cooled (option)



#### **Options**







Potential contact Thermostatic warning

 $<sup>^1</sup>$  Flow is measured at reference conditions: ambient pressure of 1 bara and 25°C at operating pressure of 7 barg, inlet temperature 35°C .



Pneumatech offers an extensive standard range of high-pressure refrigeration dryers (AC HP 20-2120) for applications up to 50 barg / 725 psig. Higher pressures are available on request. We make the difference through our state-of-the-art mono block heat exchanger with its heavy-duty steel construction and specially designed louvered copper plates, resulting in robustness and excellent cooling efficiency.

Offered in both air- and water-cooled variants, the AC HP covers

a flow range from 33  $m^3$ /hr (19 cfm) up to 3600  $m^3$ /hr (2120 cfm). The refrigeration cycle is optimized in all conditions thanks to the use of rigorously chosen control and regulating instruments such as thermostatic expansion valves, thermal switches and pressure transmitters.

AC HP dryers are the most cost-effective solutions for high pressure applications, and are typically used in bottling plants, mining and textile industry, and for water jet cutting and blasting.

| Technical sp                                 | ecific | ation      | s for A    | AC HE      | 20-2       | 120        |             |             |             |             |             |             |             |             |             |             |             |             |              |              |              |              |              |
|----------------------------------------------|--------|------------|------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|--------------|--------------|--------------|--------------|--------------|
| Pneumatech<br>Variants →<br>Specifications ↓ | Units  | ACHP<br>20 | ACHP<br>25 | ACHP<br>30 | ACHP<br>50 | ACHP<br>80 | ACHP<br>110 | ACHP<br>130 | ACHP<br>150 | ACHP<br>210 | ACHP<br>240 | ACHP<br>270 | ACHP<br>340 | ACHP<br>415 | ACHP<br>530 | ACHP<br>675 | ACHP<br>770 | ACHP<br>970 | ACHP<br>1100 | ACHP<br>1360 | ACHP<br>1440 | ACHP<br>1725 | ACHP<br>2120 |
| Flow <sup>{1}</sup>                          | I/s    | 9.2        | 10.6       | 15.0       | 24.2       | 37.5       | 52.8        | 60.6        | 71.1        | 98.6        | 114.4       | 128.1       | 160.3       | 195.8       |             | 319.2       |             | 457.8       | 520.3        |              | 678.9        | 814.4        |              |
|                                              | m³/hr  | 33         | 38         | 54         | 87         | 135        | 190         | 218         | 256         | 355         | 412         | 461         | 577         | 705         | 904         | 1149        | 1305        | 1648        | 1873         | 2309         | 2444         | 2932         | 3600         |
| Power                                        | kW     | 0.22       | 0.24       | 0.25       | 0.25       | 0.31       | 0.52        | 0.6         | 0.72        | 0.97        | 1.16        | 0.97        | 1.16        | 1.6         | 1.6         | 2.1         | 2.1         | 2.7         | 3.4          | 4.3          | 4.7          | 5.2          | 8.9          |
| consumption                                  | hp     | 0.30       | 0.32       | 0.34       | 0.34       | 0.42       | 0.70        | 0.80        | 0.97        | 1.30        | 1.56        | 1.30        | 1.56        | 2.15        | 2.15        | 2.82        | 2.82        | 3.62        | 4.56         | 5.77         | 6.30         | 6.97         | 11.94        |
| Pressure Drop                                | mBar   | 20         | 85         | 140        | 15         | 30         | 40          | 50          | 40          | 60          | 80          | 90          | 90          | 130         | 50          | 100         | 60          | 80          | 100          | 100          | 120          | 120          | 200          |
| . 1000010 210p                               | psig   | 0.29       | 1.23       | 2.03       | 0.22       | 0.44       | 0.58        | 0.73        | 0.58        | 0.87        | 1.16        | 1.31        | 1.31        | 1.89        | 0.73        | 1.45        | 0.87        | 1.16        | 1.45         | 1.45         | 1.74         | 1.74         | 2.90         |
| Refrigerant type                             | -      | R134A      | R134A      | R134A      | R134A      | R134A      | R134A       | R134A       | R134A       | R134A       | R134A       | R134A       | R134A       | R134A       | R134A       | R134A       | R134A       | R134A       | R134A        | R134A        | R134A        | R134A        | R134A        |
| In/Out Connection                            | BSP    | 3/8"       | 3/8"       | 3/8"       | 3/4"       | 3/4"       | 3/4"        | 3/4"        | 1"          | 1"          | 1"          | 1 1/2"      | 1 1/2"      | 1 1/2"      | 1 1/2"      | DN50        | DN50        | DN50        | DN50         | DN50         | DN50         | DN50         | DN50         |
| Length                                       | mm     | 500        | 500        | 500        | 676        | 676        | 676         | 676         | 675         | 675         | 675         | 700         | 700         | 700         | 700         | 700         | 700         | 1190        | 1190         | 1190         | 1190         | 1190         | 1208         |
| 2011941                                      | inch   | 19.7       | 19.7       | 19.7       | 26.6       | 26.6       | 26.6        | 26.6        | 26.6        | 26.6        | 26.6        | 27.6        | 27.6        | 27.6        | 27.6        | 27.6        | 27.6        | 46.9        | 46.9         | 46.9         | 46.9         | 46.9         | 47.6         |
| Width                                        | mm     | 360        | 360        | 360        | 405        | 405        | 405         | 405         | 485         | 485         | 485         | 752         | 800         | 800         | 800         | 800         | 800         | 1000        | 1000         | 1000         | 1000         | 1000         | 1800         |
| Width                                        | inch   | 14.2       | 14.2       | 14.2       | 15.9       | 15.9       | 15.9        | 15.9        | 19.1        | 19.1        | 19.1        | 29.6        | 31.5        | 31.5        | 31.5        | 31.5        | 31.5        | 39.4        | 39.4         | 39.4         | 39.4         | 39.4         | 70.9         |
| Height                                       | mm     | 460        | 460        | 460        | 495        | 495        | 495         | 495         | 710         | 710         | 710         | 1100        | 1320        | 1320        | 1320        | 1455        | 1455        | 1455        | 1455         | 1455         | 1455         | 1455         | 1120         |
| 1 Tolgitt                                    | inch   | 18.1       | 18.1       | 18.1       | 19.5       | 19.5       | 19.5        | 19.5        | 28.0        | 28.0        | 28.0        | 43.3        | 52.0        | 52.0        | 52.0        | 57.3        | 57.3        | 57.3        | 57.3         | 57.3         | 57.3         | 57.3         | 44.1         |
| Weight with box                              | Kg     | 30         | 30         | 30         | 45         | 50         | 58          | 60          | 70          | 80          | 90          | 130         | 160         | 190         | 195         | 285         | 355         | 455         | 465          | 505          | 530          | 565          | 645          |
| Trongin Will DOX                             | Lbs    | 66.1       | 66.1       | 66.1       | 99.2       | 110.2      | 127.9       | 132.3       | 154.3       | 176.4       | 198.4       | 286.6       | 352.7       | 418.9       | 429.9       | 628.3       | 782.6       | 1003.1      | 1025.1       | 1113.3       | 1168.4       | 1245.6       | 1422.0       |

<sup>1.</sup> Flow is measured at reference conditions: 1 bara and  $20^{\circ}$ C at operating pressure of 45 barg, inlet temperature  $35^{\circ}$ C.

| Correction | n Factors In | ilet Press | ure       |           |     |      |
|------------|--------------|------------|-----------|-----------|-----|------|
| barg       | 20           | 25         | 30        | 35 40     | 45  | 50   |
| psig       | 290          | 363        | 435       | 508 580   | 653 | 725  |
| Kb         | 0.84         | 0.91       | 0.93      | 0.97 0.98 | 3 1 | 1.02 |
|            |              |            |           |           |     |      |
| Correction | n Factors A  | mbient te  | mperature | for R134a |     |      |
| °C         | 20           | 25         | 30        | 35        | 40  | 45   |
| °F         | 68           | 77         | 86        | 95        | 104 | 113  |
|            |              |            |           |           |     |      |

| Correction | on Factors | Inlet tem | perature |      |      |      |      |
|------------|------------|-----------|----------|------|------|------|------|
| °C         | 30         | 35        | 40       | 45   | 50   | 55   | 60   |
| °F         | 86         | 95        | 104      | 113  | 122  | 131  | 140  |
| Kt         | 1.2        | 1         | 0.85     | 0.72 | 0.63 | 0.55 | 0.49 |

| Correction | n Factors A | mbient tem | perature fo | r 404a |      |     |
|------------|-------------|------------|-------------|--------|------|-----|
| °C         | 20          | 25         | 30          | 35     | 40   | 45  |
| °F         | 68          | 77         | 86          | 95     | 104  | 113 |
| Kt         | 1.06        | 1          | 0.9         | 0.81   | 0.73 | 0.6 |

# Do not 'over-dry' your entire compressed air network

Dry air comes with a cost, both in terms of initial investment as well as running costs. The required dryness should be chosen based on the largest compressed air consumers, while more critical applications can be covered with a low PDP dryer at point-of-use.

So before you install a centralized adsorption dryer, verify whether such high degree of dryness is required for your entire system. It could be sufficient to install a centralized refrigeration dryer, and to place a small adsorption or membrane dryer at point-of-use for critical applications.



# **Membrane Dryers**

Because they are not powered by electricity, membrane dryers function safely in environments that must be explosion proof such as laboratories. Thanks to their quiet operation, membrane dryers can be used close to the workplace.

Pneumatech offers a range of 5 models for low flow applications.

## M POU 2 - 16 - Point-of-use membrane dryers

#### Features and Benefits

- ▶ No power source needed
- ▶ Simple yet eco-friendly technology
  - · No desiccants or refrigerants used for drying
  - No condensate drains
- Guaranteed performance
  - · High water vapor selectivity thanks to non-porous membrane
  - · No penetration of gases other than moisture
- Maintenance free
  - No wear and tear of any mechanical or electrical part
  - · No need of replacement of any component
- ▶ Easy to transport and install
  - · Built-in purging circuits
  - · Easy and simple dew point adjustments thanks to the purge low control

#### **General Specifications**

- ▶ Dew points achievable: up to -40°C / -40°F
  - · Note: only energy-efficient up to pressure dew point reductions of 30°C / 86°F
- ▶ Operating pressure range: 0 - 8.5 barg / 0-120 psig
- Operating temperature range: -20° - 55°C / -4° - 131°F
- ▶ Ambient temperature range: -20° - 55°C / -4° - 131°F



#### **Applications**



sampling gases for gas analysers



**EDM** tools



Laser machining tool



Food and beverages



Paper industry



Gas Generators



Pneumatech offers an easy-to-use and simple drying solution for small compressed air needs. Pneumatech's point-of-use membrane dryer does not require any power source, is compact and easy to install. This makes the dryer suitable for various smaller compressed air applications where a higher degree of dehumidification is required, such as laser machining tools, precision measuring equipment, gas analyzers and small gas generators.

The pressure dew point achieved by membrane dryers is dependent on the inlet temperature of the compressed air; but can go down to -40°C/-40°F. This is achieved by a hollow-fiber membrane, where moisture can diffuse through the fine pores of the fiber bundles. When differences in moisture concentration arise between the inside and outside of a fiber membrane, moisture is transferred through the membrane surface to equalize the moisture concentration on both sides of the membrane. Part of the dry air is used as purge air in order to remove the moisture from the incoming wet air.

| Technical specifications for         | or M POU 2- | 16     |         |         |         |          |          |
|--------------------------------------|-------------|--------|---------|---------|---------|----------|----------|
| Product → Specification $\downarrow$ | Ur          | iit    | M POU 2 | M POU 3 | M POU 5 | M POU 11 | M POU 16 |
| Nominal volume flow                  | I/s         | 3      | 0,83    | 1,33    | 2,50    | 5,00     | 7,50     |
| at dryer inlet (1)                   | m³/         | hr hr  | 3       | 4,8     | 9       | 18       | 27       |
| Supply Gas                           | Inlet (G    | i/NPT) | 1/8"    | 1/8"    | 1/4"    | 3/8"     | 3/8"     |
| Inlet and outlet connections         | Outlet (    | G/NPT) | 1/4"    | 1/4"    | 1/4"    | 1/4"     | 1/4"     |
| Weight                               | Kg          |        | 0,27    | 0,27    | 0,34    | 0,68     | 0,72     |
| weight                               | Ц           | )      | 0,59    | 0,6     | 0,76    | 1,5      | 1,59     |
|                                      | \A/: - L -  | mm     | 61      | 61      | 70      | 100      | 100      |
|                                      | Width       | inch   | 2,4     | 2,4     | 2,8     | 3,9      | 3,9      |
| Dimensions                           | Halak       | mm     | 112     | 112     | 153     | 200      | 200      |
|                                      | Height      | inch   | 4,4     | 4,4     | 6,0     | 7,9      | 7,9      |
|                                      | 1           | mm     | 31      | 31      | 40      | 50       | 50       |
|                                      | Length      | inch   | 1,2     | 1,2     | 1,6     | 2,0      | 2,0      |

<sup>1.</sup> Flow is measured at Reference Conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 35°C & 30°C dew point reduction on inlet temperature..

## **Certified performance**

Pneumatech filters have been fully tested and qualified according to the latest ISO standards. Tests have been conducted in-house as well as in external labs, and are independently validated by TÜV. The following table shows some of our available ISO certificates.

The ISO 8573 standards deal with the measurement of compressed air purity, while the ISO 12500 series validate the test methods for compressed air equipment.

| ISO standard     | Test method for        | Available for |
|------------------|------------------------|---------------|
| ISO 8573-2:2007  | Oil aerosol content    | G/C           |
| ISO 12500-1:2007 | Oil aerosol filters    | G/C           |
| ISO 8573-5:2001  | Oil vapor content      | VT            |
| ISO 12500-2:2007 | Oil vapor filters      | VI.           |
| ISO 8573-4:2001  | Solid particle content | S/D           |
| ISO 12500-3:2009 | Solid particle filters | G/C           |





## **Filter Solutions**

Pneumatech offers you a comprehensive line-up of innovative filter solutions to meet your specific needs. Our filtration solutions are engineered cost-effectively to provide the best air quality and meet today's increasing quality demands.

For general applications we provide oil coalescing, particulate and oil vapor filters in a wide range of flows and pressures. Pneumatech is also your partner for breathing air, silicone-free, sterile & process filtration.

## TF 1 - 11 - Threaded filters

#### **Features & Benefits**

- Guaranteed air purity
  - · High-efficient glass fiber and foam media
- No risks of:
  - · Cracked filter media
  - Cylinder implosion
  - Top cap leakages
  - · Oil re-entrainment
- Significant energy savings
  - Optimal filter media selection allows low pressure losses
- ▶ Highest quality standards
  - In-house research, development & production
  - Each filter subjected to rigorous quality control
  - Fully tested and qualified according to ISO standards
- Robust design
  - Stainless steel cores guarantee ultimate strength
  - Protection paper to avoid damaging of glass fiber media
  - · Anti-corrosive coated filter housing
- ▶ Easy service and installation
  - Push-on filter cartridges elements
  - · Different grade, different color
  - Differential pressure gauge on HE range (indicator for sizes 1 to 3)

#### **General Specifications**

- Compressed air inlet pressure: 1-16 barg / 15-232 psig
- Max. ambient air temperature: 66°C / 151 °F (35°C / 95 °F for V grade)
- ▶ Available grades:
  - P: pre-filter
  - G: fine filter
  - C: super fine filter
  - · V: activated carbon filter for oil vapor
  - S: dust filter
  - D: dust filter high efficient



#### **Options**



Wall mounting kit



Connection kit



Potential free contact



Zero-loss drain



Differential pressure gauge (std. on HE range)



Pneumatech offers a comprehensive line-up of innovative filter solutions to meet your specific needs. Our state-of-the-art test facility allows to perform all tests according to ISO 8573 & ISO 12500 standards in-house. In this way we can optimize and validate our products to the maximum; and bring best-in-class filters to the market. From operations side, we distinct ourselves with our high level of automation and quality control in a triple certified manufacturing environment.

A filter is only as good as its weakest link. This explains our choices for two perforated stainless steel filter cores (strength), additional protection layers between filter media and core (no cracks), double O-rings for proper cartridge fixation (no leaks) and epoxy sealed end caps (guaranteed fixation). In this way, we can guarantee the highest air purity at lowest operational costs throughout the entire service life of the filter.

| Technical spec                             | ification | s for threa | ded filters    | TF 1 - 11        |                 |              |           |           |           |             |             |             |
|--------------------------------------------|-----------|-------------|----------------|------------------|-----------------|--------------|-----------|-----------|-----------|-------------|-------------|-------------|
| Pneumatech<br>Variant→<br>Specifications ↓ | Units     | TF 1        | TF 2           | TF 3             | TF 4            | TF 5         | TF 6      | TF 7      | TF 8      | TF 9        | TF 10       | TF 11       |
|                                            | I/s       | 10 (12)     | 20 (25)        | 30 (45)          | 40 (65)         | 60 (90)      | 110 (160) | 160 (215) | 220 (265) | 320 (360)   | 450 (525)   | 600 (690)   |
| Nominal (max.) flow rate <sup>{1}</sup>    | m³/hr     | 36 (43)     | 72 (90)        | 108 (162)        | 144 (234)       | 216 (324)    | 396 (576) | 576 (774) | 792 (954) | 1152 (1296) | 1620 (1890) | 2160 (2484) |
|                                            | cfm       | 21 (25)     | 42 (53)        | 64 (95)          | 85 (138)        | 127 (191)    | 233 (339) | 339 (456) | 466 (562) | 678 (763)   | 953 (1112)  | 1271 (1462) |
| Max Pressure                               | barg      | 16          | 16             | 16               | 16              | 16           | 16        | 16        | 16        | 16          | 16          | 16          |
| wax Pressure                               | psig      | 290         | 290            | 290              | 290             | 290          | 290       | 290       | 290       | 290         | 290         | 290         |
| Connection                                 | G/NPT     | 3/8"        | 1/2"           | 1/2"             | 34" & 1"        | 1"           | 1½"       | 1½"       | 1½"       | 2" & 21/2"  | 3"          | 3"          |
| Dimensions (A)                             | mm        | 90          | 90             | 90               | 110             | 110          | 140       | 140       | 140       | 179         | 210         | 210         |
| Dimensions (A)                             | inch      | 3.5         | 3.5            | 3.5              | 4.3             | 4.3          | 5.5       | 5.5       | 5.5       | 7.0         | 8.3         | 8.3         |
| Dinanciana (D)                             | mm        | 61          | 61             | 61               | 99              | 99           | 105       | 105       | 105       | 121         | 128         | 128         |
| Dimensions (B)                             | inch      | 2.4         | 2.4            | 2.4              | 3.9             | 3.9          | 4.1       | 4.1       | 4.1       | 4.8         | 5.0         | 5.0         |
| Dimensions (C)                             | mm        | 268         | 268            | 323              | 374             | 414          | 520       | 603       | 603       | 689         | 791         | 961         |
| Dimensions (C)                             | inch      | 10.6        | 10.6           | 12.7             | 14.7            | 16.3         | 20.5      | 23.7      | 23.7      | 27.1        | 31.1        | 37.8        |
| Maight                                     | Kg        | 1           | 1.1            | 1.3              | 1.6             | 2.1          | 4.2       | 4.5       | 4.6       | 6.9         | 11          | 12.6        |
| Weight                                     | Lbs       | 2.2         | 2.4            | 2.9              | 4.2             | 4.6          | 9.3       | 9.9       | 10.1      | 15.2        | 24.2        | 27.8        |
| Filter element size                        |           | 1(grade)    | 2(grade)       | 3(grade)         | 4(grade)        | 5(grade)     | 6(grade)  | 7(grade)  | 8(grade)  | 9(grade)    | 10(grade)   | 11(grade)   |
| Order example:                             |           | TF1CS       | (super fine fi | Iter without d   | ifferential pre | essure gauge | )         |           |           |             |             |             |
| Order example:                             |           | TF 1 C HE   | (super fine    | filter with diff | erential pres   | sure gauge)  |           |           |           |             |             |             |

<sup>1.</sup> Flow is measured at reference conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 10°C & std PDP of 3°C at the inlet.

| Filter Elements performance                             |            |                                                      |                                                               |                                    |             |                                     |  |  |  |  |  |
|---------------------------------------------------------|------------|------------------------------------------------------|---------------------------------------------------------------|------------------------------------|-------------|-------------------------------------|--|--|--|--|--|
| Grades →                                                | Р          | G                                                    | С                                                             | V                                  | s           | D                                   |  |  |  |  |  |
| Performance ↓                                           | Pre-filter | Fine filter -<br>Oil aerosols/<br>solid<br>particles | Super fine<br>filter -<br>Oil aerosols/<br>solid<br>particles | Activated<br>Carbon -<br>Oil vapor | Dust filter | High effi-<br>ciency<br>dust filter |  |  |  |  |  |
| Particle removal efficiency at nominal flow (% at MPPS) | 92.03%     | 99.92%                                               | 99.98%                                                        | n/a                                | 99.92%      | 99.98%                              |  |  |  |  |  |
| "Oil carry-over<br>at nominal flow (mg/m3) "            | <1*        | <0,07*                                               | <0,008*                                                       | <0,003                             | n/a         | n/a                                 |  |  |  |  |  |

<sup>\*</sup> Oil aerosol content

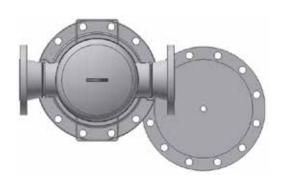
| Correction factors    |      |      |      |      |      |      |     |      |     |      |      |     |
|-----------------------|------|------|------|------|------|------|-----|------|-----|------|------|-----|
| Inlet pressure (barg) | 1    | 2    | 3    | 4    | 5    | 6    | 7   | 8    | 10  | 12   | 14   | 16  |
| Inlet pressure (psig) | 15   | 29   | 44   | 58   | 72.5 | 87   | 102 | 116  | 145 | 174  | 203  | 232 |
| Correction factor     | 0.38 | 0.53 | 0.65 | 0.75 | 0.83 | 0.92 | 1   | 1.06 | 1.2 | 1.31 | 1.41 | 1.5 |



## FF 1 - 12 - Flanged Filters

#### **Features & Benefits**

- Guaranteed air purity
  - · High-efficient glass fiber and foam media
- No risks of:
  - · Cracked filter media
  - · Cylinder implosion
  - Top cap leakages
  - · Oil re-entrainment
- Significant energy savings
  - Optimal filter media selection allows low pressure losses
  - Zero-loss electronic drain included as standard
- ▶ Highest quality standards
  - In-house research, development & production
  - Each filter subjected to rigorous quality control
  - Fully tested and qualified according to ISO standards
- ▶ Robust design
  - Stainless steel cores guarantee ultimate strength
  - Protection paper to avoid damaging of glass fiber media
  - Special coating ensures high corrosion protection, and therefore a housing lifetime of at least 20 years
- ▶ Easy service and installation
  - · Bottom cover with special rotating system
  - · Different grade, different colour
  - Differential pressure gauge, with voltage free contact


#### **General Specifications**

- ➤ Compressed air inlet pressure: 1-16 barg / 15-232 psig
- Max. ambient air temperature:66°C / 151 °F (35°C / 95 °F for V grade)
- ▶ Available grades:
  - P: pre-filter
  - · G: fine filter
  - C: super fine filter
  - V: activated carbon filter for oil vapor
  - · S: dust filter
  - · D: dust filter- high efficient



#### Zooming in

Special rotating system of bottom cover





Pneumatech's flanged filter range contains the same type of robust, high-efficient filter cartridges as the threaded range. The cartridges are contained in a welded steel housing which is pressure-rated up to 16 barg / 232 psig and provided with flanged connections at the compressed air inlet and outlet. The filter housings are completely cleaned, zinc phosphate and KTL coated at the inside and outside and externally painted afterwards. This guarantees a housing lifetime of at least 20 years.

All flanged filters are standard equipped with a zero-loss electronic drain and differential pressure gauge with voltage-free contact connections. The special rotating system of the bottom cover makes filter cartridge replacement very straightforward.

| Technical specifications for flanged filters FF 1-12 |       |                |                |                |                |                |                |                  |               |               |               |               |               |
|------------------------------------------------------|-------|----------------|----------------|----------------|----------------|----------------|----------------|------------------|---------------|---------------|---------------|---------------|---------------|
| Pneumatech Variant → Specifications ↓                | Units | FF 1           | FF 2           | FF 3           | FF 4           | FF 5           | FF 6           | FF 7             | FF 8          | FF 9          | FF 10         | FF 11         | FF12          |
|                                                      | l/s   | "550<br>(630)" | "850<br>(970)" | 1100<br>(1260) | 1400<br>(1600) | 1800<br>(2200) | 2200<br>(2400) | 3000<br>(3600)   | 4000          | 5000          | 6000          | 7000          | 8000          |
| Nominal (max.)<br>Flow Rate [1]                      | m³/hr | 1980<br>(2268) | 3060<br>(3492) | 3960<br>(4536) | 5040<br>(5760) | 6480<br>(7920) | 7920<br>(8640) | 10800<br>(12960) | 14400         | 18000         | 21600         | 25200         | 28800         |
|                                                      | cfm   | 1165<br>(1335) | 1801<br>(2055) | 2331<br>(2670) | 2966<br>(3390) | 3814<br>(4662) | 4662<br>(5085) | 6357<br>(7628)   | 8476          | 10594         | 12713         | 14832         | 16951         |
| Max Pressure                                         | barg  | 16             | 16             | 16             | 16             | 16             | 16             | 16               | 16            | 16            | 16            | 16            | 16            |
| Wax Flessure                                         | psig  | 232            | 232            | 232            | 232            | 232            | 232            | 232              | 232           | 232           | 232           | 232           | 232           |
| Connection                                           | DN    | DN80           | DN100          | DN100          | DN150          | DN150          | DN150          | DN200            | DN200         | DN250         | DN250         | DN300         | DN300         |
| Dimensions (A)                                       | mm    | 370            | 510            | 510            | 620            | 640            | 640            | 820              | 820           | 820           | 920           | 920           | 1040          |
| Difficusions (A)                                     | inch  | 14.6           | 20.1           | 20.1           | 24.4           | 25.2           | 25.2           | 32.3             | 32.3          | 32.3          | 36.2          | 36.2          | 40.9          |
| Dimensions (B)                                       | mm    | 190            | 230            | 230            | 290            | 285            | 285            | 400              | 400           | 400           | 550           | 550           | 525           |
| Difficultions (b)                                    | inch  | 7.5            | 9.1            | 9.1            | 11.4           | 11.2           | 11.2           | 15.7             | 15.7          | 15.7          | 21.7          | 21.7          | 20.7          |
| Dimensions (C)                                       | mm    | 1295           | 1360           | 1360           | 1480           | 1555           | 1555           | 1745             | 1745          | 1745          | 2085          | 2085          | 2070          |
| Difficultions (C)                                    | inch  | 51.0           | 53.5           | 53.5           | 58.3           | 61.2           | 61.2           | 68.7             | 68.7          | 68.7          | 82.1          | 82.1          | 81.5          |
| Weight                                               | Kg    | 76             | 141            | 143            | 210            | 176            | 178            | 420              | 428           | 432           | 594           | 597           | 1140          |
| vveigni                                              | Lbs   | 167.6          | 310.9          | 415.3          | 463            | 388            | 392.4          | 925.9            | 943.6         | 952.4         | 1034          | 1479.3        | 1984.2        |
| Number of filter elements                            |       | 1              | 3              | 4              | 5              | 6              | 7              | 10               | 14            | 16            | 20            | 24            | 28            |
| Filter element size                                  |       | 1F<br>(grade)  | 2F<br>(grade)  | 2F<br>(grade)  | 2F<br>(grade)  | 2F<br>(grade)  | 2F<br>(grade)  | 2F<br>(grade)    | 2F<br>(grade) | 2F<br>(grade) | 2F<br>(grade) | 2F<br>(grade) | 2F<br>(grade) |
| Order example:                                       |       | FF 1 C         | HE (superfi    | ne filter with | n differentia  | al pressure    | gauge)         |                  |               |               |               |               |               |

<sup>1.</sup> Flow is measured at reference conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 10°C & std PDP of 3°C at the inlet.

| Filter Elements performance                             |            |                                                      |                                                               |                                    |             |                                     |  |  |  |  |  |
|---------------------------------------------------------|------------|------------------------------------------------------|---------------------------------------------------------------|------------------------------------|-------------|-------------------------------------|--|--|--|--|--|
|                                                         | Р          | G                                                    | С                                                             | V                                  | S           | D                                   |  |  |  |  |  |
| Grades→<br>Performance ↓                                | Pre-filter | Fine filter -<br>Oil aerosols/<br>solid<br>particles | Super fine<br>filter -<br>Oil aerosols/<br>solid<br>particles | Activated<br>Carbon -<br>Oil vapor | Dust filter | High effi-<br>ciency<br>dust filter |  |  |  |  |  |
| Particle removal efficiency at nominal flow (% at MPPS) | 92.03%     | 99.92%                                               | 99.98%                                                        | n/a                                | 99.92%      | 99.98%                              |  |  |  |  |  |
| Oil carry-over<br>at nominal flow (mg/m³)               | <1*        | <0,07*                                               | <0,008*                                                       | <0,003                             | n/a         | n/a                                 |  |  |  |  |  |

<sup>\*</sup> Oil aerosol content

| Correction factors    |      |      |      |      |      |      |     |      |     |      |      |     |
|-----------------------|------|------|------|------|------|------|-----|------|-----|------|------|-----|
| Inlet pressure (barg) | 1    | 2    | 3    | 4    | 5    | 6    | 7   | 8    | 10  | 12   | 14   | 16  |
| Inlet pressure (psig) | 15   | 29   | 44   | 58   | 72.5 | 87   | 102 | 116  | 145 | 174  | 203  | 232 |
| Correction factor     | 0.38 | 0.53 | 0.65 | 0.75 | 0.83 | 0.92 | 1   | 1.06 | 1.2 | 1.31 | 1.41 | 1.5 |



## VT - Activated carbon towers + vessels

#### **Features & Benefits**

- ▶ Guaranteed air purity with residual oil content below 0,003 mg/m<sup>3</sup>
  - Superb 2-layer activated carbon material
  - Designed with sufficient safety margin
  - Performance certified by external body
- ▶ Significant energy savings & limited system operating costs
  - · Optimal internal flow path
  - Average pressure drop of 125 mbar only
- ▶ Certified class 1 performance, according to ISO 8573-1:2010
  - · If combined with Pneumatech oil coalescing filters (G & C)
- ► Compact and reliable product design
  - Wall-mounting kit, optional for VT1 7
  - · Easy to lift, install and service

#### **General Specifications**

- ▶ Compressed air inlet pressure:
  - VT 1-9: 1-16 barg / 15-232 psig
  - VT with optional oil indicator: 1-8,8 barg / 15-127 psig
- ► Ambient air temperature: -10 - 50°C / 14 - 122°F
- ► Compressed air inlet temperature : 1 - 66°C / 34 - 151°F



#### **Options**







**Dust filter** 





Pneumatech's VT activated carbon towers and vessels are high-efficiency filtration products designed to meet the most demanding industry applications. Examples are pharmaceutical, medical, food & beverage, electronics and chemical industries.

The VT is capable of removing hydrocarbons, odors and oil vapors from compressed air. The activated carbon layers will, by the use of adsorption, reduce the residual oil content to less than 0,003 mg/m³. In combination with Pneumatech G and C filters, the VT meets the requirements of air purity class 1 for total oil, according to ISO 8573-1:2010 in a typical compressed air installation, as was certified by an external body.

| Technical specifications for VT 1-9        |       |       |       |       |       |       |       |       |       |       |  |  |
|--------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| Pneumatech Variant→<br>Specifications ↓    | Units | VT 1  | VT 2  | VT 3  | VT 4  | VT 5  | VT 6  | VT 7  | VT 8  | VT 9  |  |  |
|                                            | l/s   | 20    | 45    | 60    | 95    | 125   | 150   | 185   | 245   | 310   |  |  |
| Capacity <sup>{1}</sup>                    | m³/hr | 72    | 162   | 216   | 342   | 450   | 540   | 666   | 882   | 1116  |  |  |
|                                            | cfm   | 42    | 95    | 127   | 201   | 265   | 318   | 392   | 519   | 657   |  |  |
| Initial pressure drop over filter when dry | BARG  | 0,015 | 0,065 | 0,11  | 0,085 | 0,135 | 0,1   | 0,145 | 0,185 | 0,27  |  |  |
| Connection                                 | G/NPT | 1/2"  | 1"    | 1"    | 1"    | 1½"   | 1½"   | 1½"   | 1½"   | 1½"   |  |  |
| Dimensions (A)                             | mm    | 490   | 715   | 840   | 715   | 840   | 715   | 840   | 840   | 840   |  |  |
| Diffictisions (A)                          | inch  | 19.29 | 28.15 | 33.07 | 28.15 | 33.07 | 28.15 | 33.07 | 33.07 | 33.07 |  |  |
| Dimensions (B)                             | mm    | 223   | 223   | 223   | 387   | 387   | 551   | 551   | 715   | 879   |  |  |
| Difficultions (b)                          | inch  | 8.78  | 8.78  | 8.78  | 15.24 | 15.24 | 21.69 | 21.69 | 28.15 | 34.61 |  |  |
| Dimensions (C)                             | mm    | 190   | 190   | 190   | 190   | 190   | 190   | 190   | 190   | 190   |  |  |
| Dimensions (C)                             | inch  | 7.48  | 7.48  | 7.48  | 7.48  | 7.48  | 7.48  | 7.48  | 7.48  | 7.48  |  |  |
| Weight                                     | Kg    | 10    | 15    | 18    | 29    | 34    | 42    | 50    | 67    | 84    |  |  |
| vveigni                                    | Lbs   | 22.0  | 33.1  | 39.7  | 63.9  | 75.0  | 92.6  | 110.2 | 147.7 | 185.2 |  |  |

<sup>1.</sup> Flow is measured at reference conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 20°C & inlet PDP of 3°C at the outlet.

| Correction factors For other compressed air inlet temperatures, please multiply the filter capacity by the following correction factor (Kt): |    |      |      |      |    |      |      |      |      |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|----|------|------|------|----|------|------|------|------|------|--|
| Inlet temperature                                                                                                                            | °C | 20   | 25   | 30   | 35 | 40   | 45   | 50   | 55   | 60   |  |
| illet temperature                                                                                                                            | °F | 68   | 77   | 86   | 95 | 104  | 113  | 122  | 131  | 140  |  |
| Correction factor                                                                                                                            | Kt | 1.67 | 1.43 | 1.25 | 1  | 0.71 | 0.56 | 0.37 | 0.25 | 0.19 |  |

| Correction factors For other compressed air inlet pressures, please multiply the filter capacity by the following correction factor (Kp): |      |      |      |      |    |     |     |     |      |      |      |      |
|-------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|----|-----|-----|-----|------|------|------|------|
| Inlet procesure                                                                                                                           | barg | 3    | 4    | 5    | 6  | 7   | 8   | 9   | 10   | 11   | 12   | 13   |
| Inlet pressure                                                                                                                            | psig | 44   | 58   | 73   | 87 | 102 | 116 | 131 | 145  | 160  | 174  | 189  |
| Correction factor                                                                                                                         | Кр   | 0.57 | 0.77 | 0.83 | 1  | 1   | 1   | 1   | 1.05 | 1.05 | 1.11 | 1.18 |

Activated carbon vessels for higher flows available on request. Please consult Pneumatech for further support.



## **H** - High Pressure Filters

#### **Features & Benefits**

- ▶ High reliability
  - · High-performance aluminum or stainless steel housings to withstand ultimately high operational pressures
  - Double O-rings, epoxy sealed caps and anti-corrosive coated filter housing
- Maximum contaminant removal
  - · Removal of dry and wet dust, particulates, oil aerosol and water droplets
  - · High-efficiency glass fiber and fleece
- Significant energy savings & limited system operating costs
  - · Optimal design and filter media allow for low pressure drops
- ▶ Easy to service
  - Cartridge color based on type of filtration grade, makes it easy to service

#### **General Specifications**

- Operating pressures: 50-100-350 barg / 725-1450-5075 psig
- ▶ Operating temperature range:
  - 0-120°C / 32-248°F (for grades S, D, G & C)
  - 0-35°C / 32-95°F (for grade V)
- ▶ Available grades:
  - · G: general oil coalescing filtration (max oil carry-over: 0,08 mg/m<sup>3</sup>)
  - C: fine oil coalescing filtration (max oil carry-over: 0,007 mg/m<sup>3</sup>)
  - S: general dust filtration (99,92% at MPPS)
  - D: fine dust filtration (99,98% at MPPS)
  - V: oil vapor filtration (max oil carry-over: 0,003 mg/m<sup>3</sup>)
- Inlet and outlet connections: threaded
- ▶ Housing material: Aluminum (50 barg / 725 psig only) or stainless steel (complete range)



#### **Applications**



Laser cutting



PET bottling



Pressure testing of components



High-pressure die casting



**Autoclave** 



Pneumatech's high pressure filters are engineered to cost effectively provide the best air purity and meet today's increasing quality demands up to working pressures of 350 barg/5075 psig. All high pressure filter housings are hydraulically tested to ensure safe and reliable operation at all times. The hydrostatic test certificate is supplied with every filter.

The high pressure filters are available in 3 pressure ranges. The 50 barg (725 psig) range is available in both aluminum and stainless steel housings. As the performance of both filters is the same, the choice between the 2 can be made based on the customer's preference. The 100 barg (1450 psig) and 350 barg (5075 psig) filters are available in stainless steel housings.

| Technical specifications for HP 1-9 50 barg Aluminium Filters |       |      |      |       |       |       |       |       |       |       |  |  |
|---------------------------------------------------------------|-------|------|------|-------|-------|-------|-------|-------|-------|-------|--|--|
| Pneumatech<br>Variant→<br>Specifications↓                     | Units | 1    | 2    | 3     | 4     | 5     | 6     | 7     | 8     | 9     |  |  |
|                                                               | l/s   | 44   | 69   | 125   | 153   | 232   | 347   | 479   | 535   | 889   |  |  |
| Capacity <sup>{1}</sup>                                       | m³/hr | 160  | 250  | 450   | 550   | 835   | 1250  | 1725  | 1925  | 3200  |  |  |
|                                                               | cfm   | 94   | 147  | 265   | 324   | 491   | 736   | 1015  | 1133  | 1883  |  |  |
| Connection                                                    | BSP   | 1/4" | 3/8" | 1/2"  | 3/4"  | 1"    | 1½"   | 1½"   | 2"    | 2"    |  |  |
| Dimensions (A)                                                | mm    | 63   | 63   | 114   | 114   | 114   | 146   | 146   | 146   | 146   |  |  |
| Dimensions (A)                                                | inch  | 2.48 | 2.48 | 4.49  | 4.49  | 4.49  | 5.75  | 5.75  | 5.75  | 5.75  |  |  |
| Dimensions (B)                                                | mm    | 150  | 190  | 305   | 305   | 395   | 435   | 435   | 435   | 635   |  |  |
| Dimensions (b)                                                | inch  | 5.91 | 7.48 | 12.01 | 12.01 | 15.55 | 17.13 | 17.13 | 17.13 | 25.00 |  |  |
| Weight                                                        | Kg    | 0.3  | 0.3  | 2.6   | 2.6   | 3.3   | 7.5   | 7.5   | 7.5   | 10    |  |  |
| VVCigiti                                                      | Lbs   | 0.7  | 0.7  | 5.7   | 5.7   | 7.3   | 16.5  | 16.5  | 16.5  | 22.0  |  |  |

| Technical specifications for HP 1-7 100 barg Stainless Steel |       |      |      |       |       |       |       |       |  |  |  |  |
|--------------------------------------------------------------|-------|------|------|-------|-------|-------|-------|-------|--|--|--|--|
| Pneumatech<br>Variant→<br>Specifications ↓                   | Units | 1    | 2    | 3     | 4     | 5     | 6     | 7     |  |  |  |  |
|                                                              | I/s   | 28   | 88   | 128   | 189   | 333   | 472   | 944   |  |  |  |  |
| Capacity <sup>{1}</sup>                                      | m³/hr | 100  | 315  | 460   | 680   | 1200  | 1700  | 3400  |  |  |  |  |
|                                                              | cfm   | 59   | 185  | 271   | 400   | 706   | 1001  | 2001  |  |  |  |  |
| Connection                                                   | BSP   | 1/4" | 1/2" | 3/4"  | 1"    | 1"    | 1½"   | 2"    |  |  |  |  |
| Dimensions                                                   | mm    | 65   | 65   | 88    | 135   | 135   | 150   | 150   |  |  |  |  |
| (A)                                                          | inch  | 2.56 | 2.56 | 3.46  | 5.31  | 5.31  | 5.91  | 5.91  |  |  |  |  |
| Dimensions                                                   | mm    | 135  | 250  | 275   | 265   | 480   | 525   | 815   |  |  |  |  |
| (B)                                                          | inch  | 5.31 | 9.84 | 10.83 | 10.43 | 18.90 | 20.67 | 32.09 |  |  |  |  |
| Weight                                                       | Kg    | 3.2  | 5.6  | 6.1   | 10.5  | 14.7  | 22    | 28    |  |  |  |  |
| TTOIGHT                                                      | Lbs   | 7.1  | 12.3 | 13.4  | 23.1  | 32.4  | 48.5  | 61.7  |  |  |  |  |

| Technical specifications for HP 1-8 50 barg Stainless Steel |       |      |      |       |       |       |       |       |       |  |  |  |  |
|-------------------------------------------------------------|-------|------|------|-------|-------|-------|-------|-------|-------|--|--|--|--|
| Pneumatech<br>Variant→<br>Specifications ↓                  | Units | 1    | 2    | 3     | 4     | 5     | 6     | 7     | 8     |  |  |  |  |
|                                                             | l/s   | 28   | 56   | 94    | 139   | 278   | 472   | 567   | 944   |  |  |  |  |
| Capacity <sup>{1}</sup>                                     | m³/hr | 100  | 200  | 340   | 500   | 1000  | 1700  | 2040  | 3400  |  |  |  |  |
|                                                             | cfm   | 59   | 118  | 200   | 294   | 589   | 1001  | 1201  | 2001  |  |  |  |  |
| Connection                                                  | BSP   | 1/4" | 3/8" | 1/2"  | 3/4"  | 1"    | 1½"   | 2"    | 2"    |  |  |  |  |
| Dimensions (A)                                              | mm    | 85   | 85   | 85    | 110   | 110   | 150   | 150   | 150   |  |  |  |  |
| Dimensions (A)                                              | inch  | 3.35 | 3.35 | 3.35  | 4.33  | 4.33  | 5.91  | 5.91  | 5.91  |  |  |  |  |
| Dimensions (B)                                              | mm    | 202  | 227  | 257   | 270   | 422   | 517   | 517   | 817   |  |  |  |  |
| Dimensions (b)                                              | inch  | 7.95 | 8.94 | 10.12 | 10.63 | 16.61 | 20.35 | 20.35 | 32.17 |  |  |  |  |
| Weight                                                      | Kg    | 1.7  | 2    | 2.2   | 4     | 5     | 15    | 15    | 21    |  |  |  |  |
| vvoigiti.                                                   | Lbs   | 3.7  | 4.4  | 4.9   | 8.8   | 11.0  | 33.1  | 33.1  | 46.3  |  |  |  |  |

| Technical specifications for HP 1-6 350 barg Stainless Steel |       |      |      |      |       |       |       |  |  |  |  |  |
|--------------------------------------------------------------|-------|------|------|------|-------|-------|-------|--|--|--|--|--|
| Pneumatech<br>Variant→<br>Specifications↓                    | Units | 1    | 2    | 3    | 4     | 5     | 6     |  |  |  |  |  |
|                                                              | I/s   | 13   | 31   | 71   | 142   | 208   | 369   |  |  |  |  |  |
| Capacity <sup>{1}</sup>                                      | m³/hr | 48   | 111  | 255  | 510   | 750   | 1330  |  |  |  |  |  |
|                                                              | cfm   | 28   | 65   | 150  | 300   | 441   | 783   |  |  |  |  |  |
| Connection                                                   | BSP   | 1/4" | 1/4" | 1/2" | 3/4"  | 1"    | 1"    |  |  |  |  |  |
| Dimensions (A)                                               | mm    | 41   | 65   | 88.5 | 885.5 | 150   | 150   |  |  |  |  |  |
| Dimensions (A)                                               | inch  | 1.61 | 2.56 | 3.48 | 34.86 | 5.91  | 5.91  |  |  |  |  |  |
| Dimensions (B)                                               | mm    | 103  | 135  | 210  | 280   | 330   | 480   |  |  |  |  |  |
| Dimensions (B)                                               | inch  | 4.06 | 5.31 | 8.27 | 11.02 | 12.99 | 18.90 |  |  |  |  |  |
| \Maiabt                                                      | Kg    | 1.6  | 3.2  | 5.6  | 6.1   | 14.5  | 17.4  |  |  |  |  |  |
| Weight                                                       | Lbs   | 3.5  | 7.1  | 12.3 | 13.4  | 32.0  | 38.4  |  |  |  |  |  |

| Correction fac    | ctors: 5 | 0 barg | Alum | inum 8 | & Stair | nless S | Steel |     |      |     |
|-------------------|----------|--------|------|--------|---------|---------|-------|-----|------|-----|
| Operating         | barg     | 4      | 6    | 8      | 10      | 15      | 20    | 30  | 40   | 50  |
| pressure          | psig     | 58     | 87   | 116    | 145     | 218     | 290   | 435 | 581  | 726 |
| Correction factor | Кр       | 0.14   | 0.22 | 0.28   | 0.34    | 0.47    | 0.56  | 0.7 | 0.85 | 1   |

| Correction fac    | ctors: 1 | 00 bar | g Stai | nless ( | Steel |      |      |      |      |      |
|-------------------|----------|--------|--------|---------|-------|------|------|------|------|------|
| Operating         | barg     | 20     | 30     | 40      | 50    | 60   | 70   | 80   | 90   | 100  |
| pressure          | psig     | 290    | 435    | 581     | 726   | 871  | 1016 | 1161 | 1306 | 1451 |
| Correction factor | Кр       | 0.45   | 0.57   | 0.68    | 0.8   | 0.84 | 0.88 | 0.92 | 0.96 | 1    |

| Correction fac    | ctors: 3 | 50 bar | g Stai | nless | Steel |      |      |      |      |      |
|-------------------|----------|--------|--------|-------|-------|------|------|------|------|------|
| Operating         | barg     | -      | -      | 50    | 100   | 150  | 200  | 250  | 300  | 350  |
| pressure          | psig     | -      | -      | 726   | 1451  | 2177 | 2903 | 3628 | 4354 | 5080 |
| Correction factor | Кр       | -      | -      | 0.73  | 0.78  | 0.82 | 0.87 | 0.91 | 0.96 | 1    |





<sup>1.</sup> Flow is referred to an absolute pressure of 1 barg and temperature of 20°C

#### **SLF** - Silicone Free Filters

#### **Features & Benefits**

- ▶ Guaranteed silicone-free
  - Plasma-cleaned O-rings, diaphragms & gaskets
  - Metallic cylinders, housing components and fasteners washed at 80°C / 176°F
  - · Certificates delivered with SLF filters
- Maximum contaminant removal
  - Removal of dry and wet dust, particulates, oil aerosol and water droplets
  - High-efficiency glass fiber and fleece media
- Significant energy savings & limited system operating costs
  - Optimal design and filter media allow for low pressure drops
  - High reliability
  - High-performance stainless steel cores, double O-rings, epoxy sealed caps and anti-corrosive coated filter housing

#### **General Specifications**

- Operating pressure range:2-16 barg / 29-232 psig
- ▶ Operating temperature range:
  - 0-66°C / 32-151°F (for grades S, D, G & C)
  - 0-35°C / 32-95°F (for grade V)
- ▶ Available grades:
  - G: general oil coalescing filtration (max oil carry-over: 0,1 mg/m³)
  - C: fine oil coalescing filtration (max oil carry-over: 0,01 mg/m³)
  - S: general dust filtration (99,81 % at MPPS)
  - D: fine dust filtration (99,97 % at MPPS)
  - V: oil vapor filtration (max oil carry-over: 0,003 mg/m³)
- Inlet and outlet connections: threaded



#### Zooming in

#### **Avoid paint defects**







Avoid blisters

Avoid poor adhesion

**Avoid craters** 



The SLF filters are free from substances that could cause defects in the paint. The filters are manufactured in a controlled environment that ensures silicone is not present on the components used or introduced in the production process. All filters are subject to dimensional inspection, pressure &

performance testing and a paint compatibility test.

SLF filters are available in 5 grades, which efficiently prevent dry and wet dust, oil aerosol, oil vapor and water drops from entering your compressed air system.

| Technical specific                        | ations for | SLF Silico | one-free fi | Iters |           |       |        |        |        |             |        |        |
|-------------------------------------------|------------|------------|-------------|-------|-----------|-------|--------|--------|--------|-------------|--------|--------|
| Pneumatech<br>Variant→<br>Specifications↓ | Units      | SLF1       | SLF2        | SLF3  | SLF 4     | SLF5  | SLF 6  | SLF 7  | SLF 8  | SLF 9       | SLF 10 | SLF 11 |
|                                           | I/s        | 9          | 17          | 32    | 44        | 60    | 120    | 150    | 175    | 280         | 390    | 520    |
| Nominal flow <sup>{1}</sup>               | m³/hr      | 32.4       | 61.2        | 115.2 | 158.4     | 216   | 432    | 540    | 630    | 1008        | 1404   | 1872   |
|                                           | cfm        | 19         | 36          | 68    | 93        | 127   | 254    | 318    | 371    | 594         | 827    | 1102   |
| Connection                                | G/NPT      | 3/8"       | 1/2"        | 1/2"  | 3/4" & 1" | 1"    | 1-1/2" | 1-1/2" | 1-1/2" | 2" & 2-1/2" | 3"     | 3"     |
| Dimensions (A)                            | mm         | 90         | 90          | 90    | 110       | 110   | 140    | 140    | 140    | 179         | 210    | 210    |
| Diffierisions (A)                         | inch       | 3.54       | 3.54        | 3.54  | 4.33      | 4.33  | 5.51   | 5.51   | 5.51   | 7.05        | 8.27   | 8.27   |
| Dimensions (B)                            | mm         | 61         | 61          | 61    | 98.5      | 98.5  | 105    | 105    | 105    | 121         | 128    | 128    |
| Dimensions (b)                            | inch       | 2.40       | 2.40        | 2.40  | 3.88      | 3.88  | 4.13   | 4.13   | 4.13   | 4.76        | 5.04   | 5.04   |
| Dimensions (C)                            | mm         | 268        | 268         | 323   | 374       | 414   | 520    | 603    | 603    | 689         | 791    | 961    |
| Diffierisions (C)                         | inch       | 10.55      | 10.55       | 12.72 | 14.72     | 16.30 | 20.47  | 23.74  | 23.74  | 27.13       | 31.14  | 37.83  |
| Weight                                    | Kg         | 1          | 1.1         | 1.3   | 1.9       | 2.1   | 4.2    | 4.5    | 4.6    | 6.9         | 11     | 12.6   |
| vveigni                                   | Lbs        | 2.2        | 2.4         | 2.9   | 4.2       | 4.6   | 9.3    | 9.9    | 10.1   | 15.2        | 24.3   | 27.8   |

<sup>1.</sup> Flow measured at reference conditions of Nominal pressure: 7 barg(e)/102 psig; temperature: 20°C, 68°F.

| Correction Factors |      |      |      |      |     |      |     |      |      |     |
|--------------------|------|------|------|------|-----|------|-----|------|------|-----|
| Inlet pressure     | barg | 2    | 4    | 6    | 7   | 8    | 10  | 12   | 14   | 16  |
| Inlet pressure     | psig | 29   | 58   | 87   | 102 | 116  | 145 | 174  | 203  | 232 |
| Correction factor  |      | 0.53 | 0.75 | 0.92 | 1   | 1.06 | 1.2 | 1.31 | 1.41 | 1.5 |



## FP & FP HP - Process Filters (incl. high pressure)

#### **Features & Benefits**

- Enhanced stainless steel (1,4301) filter housing
  - Designed for applications with high risk of corrosion
  - · High hygiene standards
- Advanced filter cartridge design
  - · High filtration efficiency
  - Guaranteed performance over the entire lifetime
  - · Low pressure drop
- Ultimate strength
- ▶ 100% integrity tested (DOP test)
- All components meet the FDA requirements for contact with food in accordance with the Code of Federal Regulations (CFR), title 21.
- Wide range of cartridges to suit application needs

#### **General Specifications: FP 1-18**

- Stainless Steel Process Filters
- Operating Pressure: 10-16 barg / 145-232 psig
- ▶ Operating temperature range¹: 0-150°C / 41-302°F
- ► Body Connections: DIN 11851 (Milk pipe connections)
- > Surface Finish: Ra 1.6, electro-polished
- Inlet and outlet Connections: Threaded and flanged.

<sup>1</sup>Operating temperature range can vary as per the filter element used.

#### **General Specifications: FP HP 1-8**

- ▶ High Pressure Stainless Steel Process Filters
- Operating Pressure: 50 barg / 725 psig
- Operating temperature range¹: 0-150°C / 41-302°F
- ▶ Body Connections: DIN 11851 (Milk pipe connections)
- Surface Finish: Ra 1.6, electro-polished
- Inlet and outlet Connections: threaded (and flanged from FP 13 onwards)

<sup>1</sup>Operating temperature range can vary as per the filter element used.





In process industries where the risk of corrosion of the compressed air system components is high, Pneumatech's FP 1-18 process filter range provides the right solution. The filter housing is made out of stainless steel grade 1,4301. The surface has been smoothened with advanced mechanical and electro-polishing techniques to a level of Ra 1,6. To avoid micro-organism contamination between the filter head and bowl, these are connected by a milk pipe connection as per DIN 11851.

The filter cartridges are available in 4 different filtration grades for a wide variety of applications. All cartridges have been extensively tested to guarantee the best filtration efficiency over the entire cartridge lifetime.

| Technical Spe                              | ecification   | ons FP | 1-18   |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|--------------------------------------------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Pneumatech<br>Variant→<br>Specifications ↓ | Units         | FP 1   | FP 2   | FP 3   | FP 4   | FP 5   | FP 6   | FP 7   | FP 8   | FP 9   | FP 10  | FP 11  | FP 12  | FP 13  | FP 14  | FP 15  | FP 16  | FP 17  | FP 18  |
| Flow <sup>1</sup>                          | m³/hr         | 75     | 105    | 150    | 225    | 315    | 420    | 600    | 900    | 1260   | 1680   | 2400   | 3600   | 5040   | 6720   | 9600   | 13440  | 17280  | 21120  |
| 1 low                                      | cfm           | 44     | 62     | 88     | 132    | 185    | 247    | 353    | 530    | 742    | 989    | 1413   | 2119   | 2966   | 3955   | 5650   | 7910   | 10171  | 12431  |
| Operating Pressure                         | barg/<br>psig | 16/232 | 16/232 | 16/232 | 16/232 | 16/232 | 16/232 | 16/232 | 16/232 | 16/232 | 16/232 | 12/174 | 12/174 | 10/145 | 10/145 | 10/145 | 10/145 | 10/145 | 10/145 |
| Connections                                | Inch          | 1/4"   | 3/8"   | 1/2"   | 3/4"   | 1"     | 1 1/4" | 1 1/2" | 2"     | 2"     | 2 1/2" | 3"     | 3"     | DN100  | DN100  | DN150  | DN150  | DN200  | DN200  |
|                                            | A (mm)        | 202    | 232    | 230    | 254    | 275    | 337    | 386    | 457    | 583    | 740    | 1004   | 1029   | 986    | 1240   | 1311   | 1351   | 1496   | 1496   |
|                                            | A (inch)      | 8.0    | 9.1    | 9.1    | 10.0   | 10.8   | 13.3   | 15.2   | 18.0   | 23.0   | 29.1   | 39.5   | 40.5   | 38.8   | 48.8   | 51.6   | 53.2   | 58.9   | 58.9   |
|                                            | B (mm)        | 116    | 120    | 125    | 125    | 136    | 155    | 180    | 180    | 180    | 224    | 224    | 252    | 410    | 410    | 480    | 540    | 660    | 660    |
| Dimensions                                 | B (inch)      | 4.6    | 4.7    | 4.9    | 4.9    | 5.4    | 6.1    | 7.1    | 7.1    | 7.1    | 8.8    | 8.8    | 9.9    | 16.1   | 16.1   | 18.9   | 21.3   | 26.0   | 26.0   |
|                                            | C (mm)        | 76.1   | 76.1   | 76.1   | 76.1   | 88.9   | 88.9   | 114.3  | 114.3  | 114.3  | 139.7  | 139.7  | 168.3  | 219.1  | 219.1  | 273    | 323.9  | 406.4  | 406.4  |
|                                            | C (inch)      | 3.0    | 3.0    | 3.0    | 3.0    | 3.5    | 3.5    | 4.5    | 4.5    | 4.5    | 5.5    | 5.5    | 6.6    | 8.6    | 8.6    | 10.7   | 12.8   | 16.0   | 16.0   |
|                                            | D             | 1/4"   | 1/4"   | 1/4"   | 1/4"   | 1/4"   | 1/4"   | 1/4"   | 1/4"   | 1/4"   | 1/4"   | 1/4"   | 1/4"   | 1"     | 1"     | 1"     | 1"     | 1"     | 1"     |
| Mass                                       | Kg            | 1.7    | 1.9    | 1.9    | 2      | 2.6    | 3      | 4.3    | 4.8    | 5.3    | 9      | 10.8   | 16.2   | 45     | 46     | 70     | 80     | 135    | 135    |
| IVIASS                                     | Lbs           | 3.7    | 4.2    | 4.2    | 4.4    | 5.7    | 6.6    | 9.5    | 10.6   | 11.7   | 19.8   | 23.8   | 35.7   | 99.2   | 101.4  | 154.3  | 176.4  | 297.6  | 297.6  |

<sup>1.</sup> Flow is measured at Reference Conditions: 1 bara and 20°C

| Technical spec                             | ifications | for FP H | P 1-8   |         |         |         |         |         |         |
|--------------------------------------------|------------|----------|---------|---------|---------|---------|---------|---------|---------|
| Pneumatech<br>Variant→<br>Specifications ↓ | Units      | FP HP 1  | FP HP 2 | FP HP 3 | FP HP 4 | FP HP 5 | FP HP 6 | FP HP 7 | FP HP 8 |
| Flow <sup>1</sup>                          | m³/hr      | 150      | 225     | 315     | 420     | 600     | 900     | 1260    | 2400    |
| FIOW.                                      | cfm        | 88       | 132     | 185     | 247     | 353     | 530     | 742     | 1413    |
| Operating Pressure                         | barg/psig  | 50/725   | 50/725  | 50/725  | 50/725  | 50/725  | 50/725  | 50/725  | 50/725  |
| Connections                                | Inch       | 1/2"     | 3/4"    | 1"      | 1 1/4"  | 1 1/2"  | 2"      | 2"      | 3"      |
|                                            | A (mm)     | 231      | 253     | 274     | 336     | 387     | 453     | 580     | 1005    |
|                                            | A (inch)   | 9.1      | 10.0    | 10.8    | 13.2    | 15.2    | 17.8    | 22.8    | 39.6    |
|                                            | B (mm)     | 125      | 125     | 136     | 155     | 180     | 180     | 180     | 224     |
| Dimensions                                 | B (inch)   | 4.9      | 4.9     | 5.4     | 6.1     | 7.1     | 7.1     | 7.1     | 8.8     |
|                                            | C (mm)     | 76.1     | 76.1    | 88.9    | 88.9    | 114.3   | 114.3   | 114.3   | 139.7   |
|                                            | C (inch)   | 3.0      | 3.0     | 3.5     | 3.5     | 4.5     | 4.5     | 4.5     | 5.5     |
|                                            | D          | 1/4"     | 1/4"    | 1/4"    | 1/4"    | 1/4"    | 1/4"    | 1/4"    | 1/4"    |
| Mass                                       | kg         | 2.5      | 2.6     | 3.4     | 3.9     | 5.6     | 6.2     | 6.9     | 14.1    |
| IVIdSS                                     | Lbs        | 5.5      | 5.7     | 7.5     | 8.6     | 12.3    | 13.7    | 15.2    | 31.1    |

øC

<sup>1.</sup> Flow is measured at Reference Conditions: 1 bara and 20°C

| Correction factor | rs   |      |     |      |      |      |     |      |      |      |      |      |      |      |      |      |      |      |      |      |
|-------------------|------|------|-----|------|------|------|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Operating         | barg | 2    | 3   | 4    | 5    | 6    | 7   | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   | 20   | 30   | 40   | 50   |
| pressure          | psig | 29   | 44  | 58   | 72   | 87   | 100 | 115  | 130  | 145  | 160  | 174  | 189  | 203  | 218  | 232  | 100  | 290  | 435  | 725  |
| Correction factor | Кр   | 0,38 | 0,5 | 0,63 | 0,75 | 0,88 | 1   | 1,13 | 1,25 | 1,38 | 1,50 | 1,63 | 1,75 | 1,88 | 2,00 | 2,13 | 2,63 | 3,88 | 5,13 | 6,38 |

## FS - Sterile Filters

#### **Features & Benefits**

- ► Enhanced high-grade stainless steel filter housing
  - Designed for applications with high risk of corrosion
  - High hygiene standards thanks to sanitary couplings
- Advanced filter cartridge design
  - High microbiological filtration efficiency
  - Designed to withstand a large number of sterilization cycles thanks to silicon bonded joint and additional NOMEX layer
- ▶ Stainless steel cylinders and end-caps
- ▶ Low pressure drop
- ▶ 100% integrity tested (DOP test)
- All components meet the FDA requirements for contact with food in accordance with the Code of Federal Regulations (CFR), title 21.



#### **General Specifications**

- ➤ Operating Pressure: 10-16 barg/145-232 psig
- Operating temperature range¹: -20°C to 150°C / -4°F to 302°F
- Side Connections : DN10 to DN200 sanitary flange (ISO)
- Surface Finish: Ra 0.8
- ▶ Body Connections: Sanitary tri clamp

<sup>1</sup>Operating temperature range can vary as per the filter element used.



Pneumatech's FS filters are designed for compressed air and gas applications that need to be free from microbiological contamination, and can thus be sterilized regularly.

Pneumatech's FS filter housings are made out of stainless steel grade 1,4301, with a surface that has been smoothened to a level of Ra 0,8. The upper and bottom filter parts are connected by a sanitary tri clamp fitting; and the side connections are made out of sanitary ISO flanges. As a result, there is no void inside the entire filter housing; and thus no risk of micro-organism contamination.

The filter elements are manufactured with silicon as bonded joint to ensure robustness at high operating and sterilization temperatures. For the same reason, an additional NOMEX layer is used at the inside and outside of the filter element. The filter cylinders and end-caps are made out of stainless steel. This all results in a highly efficient and exceptionally strong filter, which keeps its performance after a large number of sterilization cycles.

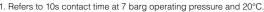
| Technical sp           | ecifica       | tions fo       | r FS 1-1       | 16             |                |                |                |                |                |                |                |          |          |          |          |          |          |
|------------------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------|----------|----------|----------|----------|----------|
| Pneumatech<br>Variant→ | Units         | FS HE 1        | FS HE 2        | FS HE 3        | FS HE 4        | FS HE 5        | FS HE 6        | FS HE 7        | FS HE 8        | FS HE 9        | FS HE 10       | FS HE 11 | FS HE 12 | FS HE 13 | FS HE 14 | FS HE 15 | FS HE 16 |
|                        | l/s           | 21             | 29             | 42             | 63             | 88             | 167            | 250            | 350            | 467            | 667            | 1400     | 1867     | 2667     | 3733     | 4778     | 5867     |
| Flow <sup>{1}</sup>    | m³/hr         | 75             | 105            | 150            | 225            | 315            | 600            | 900            | 1260           | 1680           | 2400           | 5040     | 6720     | 9600     | 13440    | 17200    | 21120    |
|                        | cfm           | 44             | 62             | 88             | 132            | 185            | 353            | 530            | 742            | 989            | 1,413          | 2,966    | 3,955    | 5,650    | 7,910    | 10,124   | 12,431   |
| Operating<br>Pressure  | barg/<br>psig | 16/232         | 16/232         | 16/232         | 16/232         | 16/232         | 16/232         | 16/232         | 16/232         | 16/232         | 16/232         | 10/145   | 10/145   | 10/145   | 10/145   | 10/145   | 10/145   |
| Connections            | Inch          | DN10/<br>ø17,2 | DN10/<br>ø17,2 | DN15/<br>ø21,3 | DN15/<br>ø21,3 | DN25/<br>ø35,7 | DN32/<br>ø42,4 | DN40/<br>ø48,3 | DN50/<br>ø60,3 | DN65/<br>ø76,1 | DN80/<br>ø88,9 | DN100    | DN100    | DN150    | DN150    | DN200    | DN200    |
|                        | A (mm)        | 218            | 246            | 251            | 275            | 303            | 363            | 446            | 587            | 763            | 1015           | 1012     | 1266     | 1305     | 1418     | 1568     | 1568     |
|                        | A (inch)      | 8.6            | 9.7            | 9.9            | 10.8           | 11.9           | 14.3           | 17.6           | 23.1           | 30.0           | 40.0           | 39.8     | 49.8     | 51.4     | 55.8     | 61.7     | 61.7     |
|                        | B (mm)        | 125            | 125            | 120            | 120            | 169            | 169            | 169            | 183            | 195            | 195            | 410      | 410      | 480      | 540      | 660      | 660      |
| Dimensions             | B (inch)      | 4.9            | 4.9            | 4.7            | 4.7            | 6.7            | 6.7            | 6.7            | 7.2            | 7.7            | 7.7            | 16.1     | 16.1     | 18.9     | 21.3     | 26.0     | 26.0     |
| Dimensions             | C (mm)        | 76.1           | 76.1           | 76.1           | 76.1           | 114.3          | 114.3          | 114.3          | 114.3          | 139.7          | 139.7          | 219.1    | 219.1    | 273      | 323.9    | 406.4    | 406.4    |
|                        | C (inch)      | 3.0            | 3.0            | 3.0            | 3.0            | 4.5            | 4.5            | 4.5            | 4.5            | 5.5            | 5.5            | 8.6      | 8.6      | 10.7     | 12.8     | 16.0     | 16.0     |
|                        | D (mm)        | 69             | 69             | 69             | 69             | 86             | 86             | 86             | 96             | 120            | 120            | 183      | 183      | 225      | 256      | 306      | 306      |
|                        | E (inch)      | 1/8"           | 1/8"           | 1/8"           | 1/8"           | 1/4"           | 1/4"           | 1/4"           | 1/4"           | 1/4"           | 1/4"           | 1/2"     | 1/2"     | 1/2"     | 1"       | 1"       | 1"       |
| Mass                   | Kg            | 1.6            | 1.7            | 1.7            | 1.8            | 3.1            | 3.4            | 3.6            | 4.9            | 8.4            | 10.2           | 44       | 45       | 70       | 80       | 135      | 135      |
| iviass                 | Lbs           | 3.5            | 3.7            | 3.7            | 4.0            | 6.8            | 7.5            | 7.9            | 10.8           | 18.5           | 22.5           | 97.0     | 99.2     | 154.3    | 176.4    | 297.6    | 297.6    |

<sup>1.</sup> Flow is measured at Reference Conditions: 1 bara and 20°C

| Correction fac     | tors |      |      |      |      |      |     |      |      |      |      |      |      |      |      |      |
|--------------------|------|------|------|------|------|------|-----|------|------|------|------|------|------|------|------|------|
| Operating          | barg | 2    | 3    | 4    | 5    | 6    | 7   | 8    | 9    | 10   | 11   | 12   | 13   | 14   | 15   | 16   |
| Operating pressure | psig | 29   | 44   | 58   | 72   | 87   | 100 | 115  | 130  | 145  | 160  | 174  | 189  | 203  | 218  | 232  |
| Correction factor  | Кр   | 0,38 | 0,50 | 0,63 | 0,75 | 0,88 | 1   | 1,13 | 1,25 | 1,38 | 1,50 | 1,63 | 1,75 | 1,88 | 2,00 | 2,13 |



## TF DC - Filters with Desiccant Cartridges


#### **General Specifications**

- ▶ Pressure dew point: -40°C
- Max working pressure: 16 barg / 232 psig
- Operating temperature range:  $1,5 - 45 \,^{\circ}\text{C} / 35 - 113 \,^{\circ}\text{F}$

The TF DC consists of a desiccant-filled cartridge, fit inside the standard Pneumatech filter housing. The desiccant dries the compressed air down to -40°C / -40°F but only has a limited lifetime, as it is not regenerated. The DC is therefore meant to dry small amounts of temporarily required compressed air; or as a safety filter downstream the main dryer.

The integrated dust filter collects any dust particles from the desiccant, making downstream dust filtration unnecessary. As with adsorption dryers, upstream oil coalescing filters are recommended to avoid that oily contaminants would stick to the desiccant.

| Technical specificat                                 | ions for [ | Desiccant ( | Cartridges |         |         |         |         |
|------------------------------------------------------|------------|-------------|------------|---------|---------|---------|---------|
| Filter Cartridge<br>Size element→<br>Specifications↓ | Unit       | TF 2 DC     | TF 4 DC    | TF 5 DC | TF 6 DC | TF 7 TC | TF 8 DC |
| Nominal flow <sup>{1</sup> }                         | m³/hr      | 0,2         | 0,7        | 1       | 3,7     | 4,2     | 5       |
| Norminal nowes                                       | cfm        | 0,12        | 0,41       | 0,59    | 2,18    | 2,47    | 2,94    |
| Total Capacity <sup>(2)</sup>                        | m³         | 5           | 18         | 26      | 82      | 94      | 114     |
| Total Capacity                                       | Ft³        | 185,9       | 647,8      | 907,4   | 2898,5  | 3320,2  | 4029,6  |
| Connections                                          | inch       | 1/2"        | 3/4"       | 1"      | 1 1/2"  | 1 1/2"  | 1 1/2"  |
| Molecular                                            | kg         | 0,056       | 0,196      | 0,278   | 0,878   | 1,02    | 1,201   |
| Sieves Mass                                          | Lbs        | 0,12        | 0,43       | 0,61    | 1,94    | 2,25    | 2,65    |
| 4. D. C I. 40 I I.                                   |            |             | 1.00       |         |         |         |         |



<sup>2.</sup> Refers to 20°C inlet temperature, 100% relative humidity and 20% wt desiccant load capacity.



| Correction factor     |    |    |      |      |      |      |      |
|-----------------------|----|----|------|------|------|------|------|
|                       | °C | 20 | 25   | 30   | 35   | 40   | 45   |
| Operating Temperature | °F | 68 | 77   | 86   | 95   | 104  | 113  |
|                       | Kt | 1  | 0.98 | 0.97 | 0.95 | 0.94 | 0.92 |



## TF CC & TF HC - filters with Activated Carbon & Hopcalite cartridges

The cartridge-concept of the Desiccant Cartridges is also applied to activated carbon and hopcalite materials.

The activated carbon cartridge can be considered an intermediate solution between the carbon impregnated cartridge (V) and the activated carbon towers (VT). It provides thus a compact oil vapor filtration solution, albeit with a longer service life than the V filter.

Hopcalite is a catalyst which converts carbon monoxide into carbon dioxide. It is often used in breathing air applications to bring the carbon monoxide concentration below the prescribed thresholds of 15 ppm according to EN 12021 and 5 ppm according to the European Pharmacopeia.

Both solutions include an integrated dust filter. The correct filter sizing is usually based on the requested pressure drop over the filter.

## **General Specifications**

- Max working pressure: 16 barg / 232 psig
- Operating temperature range: 1,5 - 45 °C / 35 - 113 °F
- ▶ Service life: Dependent on inlet concentration - please consult Pneumatech for further support.









| Technical spec                   | ifications | for Activ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ated Carb | on Cartri | dges    |         |         |
|----------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|---------|---------|---------|
| Filter grade→<br>Specifications↓ | Unit       | TF 2 CC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TF 4 CC   | TF 5 CC   | TF 6 CC | TF 7 CC | TF 8 CC |
| Flow Capacity <sup>{1}</sup>     | m³/hr      | 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 144       | 216       | 396     | 576     | 792     |
| 1 low Capacity.                  | cfm        | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85        | 127       | 233     | 339     | 466     |
| Connections                      | inch       | 1/2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3/4"      | 1"        | 1 1/2"  | 1 1/2"  | 1 1/2"  |
| Pressure Drop at                 | mBar       | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110       | 120       | 420     | 730     | 1400    |
| Nominal Flow                     | psig       | 1,16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,60      | 1,74      | 6,09    | 10,59   | 20,31   |
| Activated Carbon                 | kg         | 0,04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0,14      | 0,199     | 0,627   | 0,729   | 0,858   |
| Mass                             | Lbs        | 0,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0,3       | 0,4       | 1,4     | 1,6     | 1,9     |
| 1 Elow refere to 1 has           | 20°C       | 72         144         216         396         576         792           42         85         127         233         339         466           1/2"         3/4"         1"         1 1/2"         1 1/2"         1 1/2"         1 1/2"           80         110         120         420         730         1400           1,16         1,60         1,74         6,09         10,59         20,31           0,04         0,14         0,199         0,627         0,729         0,858 |           |           |         |         |         |

<sup>1.</sup> Flow refers to 1 barg and 20°C at 7 barg operating pressure.

| Technical specifications for Hopcalite Cartridges |       |         |         |         |         |         |         |  |  |  |  |  |
|---------------------------------------------------|-------|---------|---------|---------|---------|---------|---------|--|--|--|--|--|
| Filter grade→<br>Specifications↓                  | Unit  | TF 2 HC | TF 4 HC | TF 5 HC | TF 6 HC | TF 7 HC | TF 8 HC |  |  |  |  |  |
| Flow Capacity <sup>(1)</sup>                      | m³/hr | 78      | 120     | 198     | 335     | 510     | 780     |  |  |  |  |  |
| 1 low Capacity                                    | cfm   | 46      | 71      | 117     | 197     | 300     |         |  |  |  |  |  |
| Connections                                       | inch  | 1/2"    | 3/4"    | 1"      | 1 1/2"  | 1 1/2"  | 1 1/2"  |  |  |  |  |  |
| Pressure Drop at                                  | mBar  | 80      | 110     | 120     | 420     | 730     | 1400    |  |  |  |  |  |
| Nominal Flow                                      | psig  | 1,16    | 1,60    | 1,74    | 6,09    | 10,59   | 20,31   |  |  |  |  |  |
| Hopcalite mass                                    | kg    | 0,073   | 0,252   | 0,358   | 1,129   | 1,312   | 1,544   |  |  |  |  |  |
| Hopcaine mass                                     | Lbs   | 0,2     | 0,6     | 0,8     | 2,5     | 2,9     | 3,4     |  |  |  |  |  |

<sup>1.</sup> Flow refers to 1 barg and 20°C at 7 barg operating pressure.

| Correction factor          |      |      |     |      |      |      |     |      |      |      |     |      |      |      |     |      |
|----------------------------|------|------|-----|------|------|------|-----|------|------|------|-----|------|------|------|-----|------|
| Operating pressure         | barg | 2    | 3   | 4    | 5    | 6    | 7   | 8    | 9    | 10   | 11  | 12   | 13   | 14   | 15  | 16   |
|                            | psig | 29   | 44  | 58   | 73   | 87   | 102 | 116  | 131  | 145  | 160 | 174  | 189  | 203  | 218 | 232  |
| Pressure correction factor | Кр   | 0.38 | 0.5 | 0.63 | 0.75 | 0.88 | 1   | 1.13 | 1.25 | 1.38 | 1.5 | 1.63 | 1.75 | 1.88 | 2   | 2.13 |

## **BREATHBOX -** Portable breathing air system

#### **Features & Benefits**

- ▶ High quality breathing air for up to 5 people
  - Based on conservative peak inhalation rate of 15,1 m<sup>3</sup>/hr / 8,9 cfm per person, as defined by BS 4275:1997
- Rigorous air quality monitoring
  - Continuous measurement of CO, CO<sub>2</sub> and O<sub>2</sub> concentrations
  - · Compliance with EN 12021 and BS 4275:1997
  - Alarm triggering when air quality does not comply with the standards
  - · Gas analyzers approved and certified as per various certification bodies and standards
- Advanced filter design
  - · Highly reliable filter cartridges
  - Ensuring ISO 8573-1:2010 Class 1:x:1
- ▶ Plug and play portable design
  - · Small footprints and low weight design
  - Easy installation with quick couplings

#### **General Specifications**

- ▶ Operating Pressure: 0-16 barg / 0-232 psig
- Operating temperature range: 1.5-40°C / 35-104°F
- ▶ Inlet and outlet connections : Quick coupling DN 7,2 (inlet-male, outlet-female)
- ▶ Electrical Connections: 230 VAC / 110 VAC / 9 VDC to 24 VDC
- ▶ Power consumption: < 10W



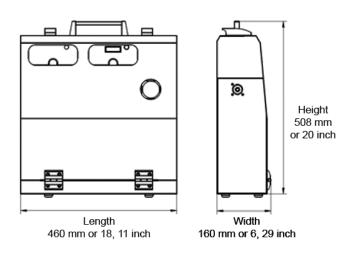


Are you looking for a portable, easy-to-use and reliable breathing air solution?

Pneumatech's BREATHBOX can safely provide high-quality breathing air for up to 5 people. The BREATHBOX consists of a 5-stage filter train, combined with gas concentration analyzers, a pressure regulator and quick couplings, all packed in a compact and robust casing.

The 5-stage filter train includes:

- · High-efficiency oil coalescing filter
- · Oil vapor removal filter with activated carbon pellets
- · Integrated particle removal filters to remove all activated carbon dust particles


- · Hopcalite catalyst to convert carbon monoxide into carbon dioxide
- Integrated high-efficiency particle removal filter to remove hopcalite dust particles

Gas concentration analyzers monitor CO, CO2 and O2 concentrations at all times, and trigger an alarm if concentrations exceed the values described in EN12021 and BS4275:1997.

The BREATHBOX is easy to transport, install and use; and can therefore be used in a wide range of applications, such as shotblasting, tank cleaning, spray painting and manufacturing.

| Technical Specifications for Breathbox |       |                                                                            |  |  |  |  |  |  |  |
|----------------------------------------|-------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Flow rate <sup>(1)</sup> (7bar, 20°C)  | m³/hr | 120                                                                        |  |  |  |  |  |  |  |
| Tiow rate** (70ai, 20 G)               | cfm   | 71                                                                         |  |  |  |  |  |  |  |
| 1st filtration stage                   |       | Oil aerosol filtration down to < 0,01 mg/m³                                |  |  |  |  |  |  |  |
| 2 <sup>nd</sup> filtration stage       |       | Oil vapor filtration down to < 0,005 mg/m³ with integrated particle filter |  |  |  |  |  |  |  |
| 3rd filtration stage                   |       | CO removal, with integrated particle filter                                |  |  |  |  |  |  |  |
| CO monitoring                          |       | Warning 3 ppm, alarm 5 ppm                                                 |  |  |  |  |  |  |  |
| CO <sub>2</sub> monitoring             |       | Alarms (increasing intensity) at 500 ppm/1500 ppm                          |  |  |  |  |  |  |  |
| O <sub>2</sub> monitoring              |       | Alarm at O <sub>2</sub> concentration <19,5%                               |  |  |  |  |  |  |  |
| Protection class of analysers          |       | IP65                                                                       |  |  |  |  |  |  |  |
| Weight                                 | kg    | 12                                                                         |  |  |  |  |  |  |  |
| Wolgitt                                | Lbs   | 26.5                                                                       |  |  |  |  |  |  |  |

<sup>1.</sup> Flow refers to 1 barg and 20°C at 7 barg operating pressure.



## Competitor spare parts - Alternative line filter cartridges

#### Features & Benefits

- Guaranteed performance
  - · Filter media selected to offer low differential pressure, high oil removal efficiencies and proven continuous performance
  - Performance equal to or superior than the original
- ▶ Robust design
  - Perforated support cylinders made from corrosion resistant stainless steel, which is twice as strong as galvanized steel
  - Protection layers to protect the glass fiber media from being damaged by the metal cores
- Guaranteed interchangeability
  - · Designed to fit into the original housing
  - · Tested in more than 10.000 filters in the field
- Quality Control
  - Full traceability by ink jet marking specific codes on every filter element complying with our IOS 9001 manufacturing procedures



#### **Brands**

Domnick Hunter Dollinger (SPX) Zander Finite Donaldson Ultrafilter Kaeser CompAir Hydrovane Hiross Ingersoll Rand Hankison (SPX) Parker Balston


Deltech (SPX) Sullair CTA **FST** 

Bea Filtri And many more



Pneumatech offers superior quality alternative line filters for all major brands including Domnick Hunter, Zander, Donaldson and many more. We can supply filtration solutions for any grade or class of air quality to suit all air compressor needs.

Pneumatech's high quality filter elements use the latest filter media technology and fit seamlessly into OEM machines and housings. There is no need for modification kits or adapters. The elements offer unrivaled reliability and operate with minimal pressure drop, delivering optimum energy efficiency. All our brand alternatives are tested in accordance with ISO 12500 to guarantee exceptional performance. The filters are extensively tested in the field without any performance issues.



## Competitor spare parts - Alternative desiccants

#### Features & Benefits

- > All types of desiccants, matched to the OEM performance
  - Acticated alumina
  - Silicagel
  - Molecular sieves
  - Activated carbon
- ▶ High-quality supply at the lowest cost
  - Lowest total cost of ownership
  - · Highest crushing resistance
  - · Limited anti-aging effect

#### Why choose Pneumatech for alternative spare parts?

- ▶ Excellent customer service
- Over 250.000 parts available
- Same day shipping
- ▶ World class logistics
- ▶ Full track and trace of all shipments
- ▶ Competitive pricing & flexible discounts
- Customized labelling

Adsorption dryers can only be energy efficient if they contain premium desiccant material. The desiccant used in Pneumatech adsorption dryers is carefully selected from a wide range of European and North-American suppliers; and is suitable for all OEM machines including Domnick Hunter, Donaldson, Boge, Ingersoll Rand, Compair, Kaeser, Almig and many more.



#### **Brands**

| Domnick Hunter        | CompAir        |
|-----------------------|----------------|
| Zander                | Ingersoll Rand |
| Donaldson Ultrafilter | Boge           |
| Hankison (SPX)        | Almig          |

**FST** Deltech (SPX) CTA KSI

Dollinger (SPX) Parker Balston Kaeser And many more



## Protect the environment – treat your condensate

As efficient as the process may be, a compressor inevitably produces more than compressed air alone. One of its by-products is a large volume of condensate, generally an emulsified combination of oil and water that poses a serious environmental risk. Only by treating this condensate in the right way, we can make sure it brings no harm to the environment.

Depending on the location, severe penalties can be charged for dumping oily condensate in the sewage system. The legal threshold of the maximum oil concentration in water varies strongly depending on continent, country and even local region. However, the maximum allowable oil content in drainage to the sewage generally varies between 15 and 20 mg/l



# **Condensate Management**

Pneumatech's condensate management portfolio includes solutions for separating, draining, detecting and treating oily condensate.

Water separators can be used downstream of the compressor instead of - or together with - the air receiver. We offer three types of condensate drains depending on your needs: a timer drain, a mechanical zero loss float drain and an electronic zero loss drain. Also for condensate treatment we give you the choice, i.e. between the cost-competitive ECOBOX solution and our premium, patented OWS technology.

## SW 1 - 12 - Water Separator

#### **Features & Benefits**

- ► Guaranteed 99% water removal efficiency
  - Unique centrifugal fin design
  - · Bottom shield to avoid water reentrainment
  - Guaranteed performance down to 25% of nominal flow
- ▶ Robust design
  - · Rigid cast aluminum alloy with corrosion protection
  - · Standard fitted with float operated automatic drain valves
  - Maintenance-free

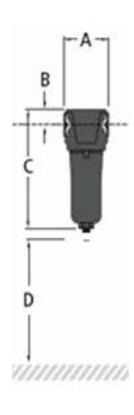
## **General Specifications**

- Water separators
- ► Max working pressure: 16 barg / 232 psig
- ► Operating temperature range: 2 - 120 °C / 35 - 248°F





The saturated, hot air at the outlet of the compressor will cool down along the cold piping network. This causes condensate to form that can result in corrosion, bad product quality or process malfunctioning. Having free water at the inlet also impacts the lifetime and performance of filters and dryers.


Pneumatech's SW water separators solve these problems by removing bulk water with 99% efficiency, thanks to the unique

centrifugal fin design. The shield at the bottom of the SW prevents re-entrainment of separated water and creates a calm zone allowing for drainage.

The SW range is available for flows up to 2550 m³/hr / 1500 cfm. For any size the water removal efficiency is guaranteed down to 25% of the nominal flow, making the WS ideal for variable speed compressors.

| Technical specifications for SW 1-12        |       |      |      |      |      |       |       |       |       |       |       |       |       |       |
|---------------------------------------------|-------|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Variant Name →<br>Technical Specification ↓ | Uı    | nit  | SW 1 | SW 2 | SW 3 | SW 4  | SW 5  | SW 6  | SW 7  | SW 8  | SW 9  | SW 10 | SW 11 | SW 12 |
| Flow rate <sup>(1)</sup>                    | m³/hr |      | 42   | 59   | 85   | 119   | 212   | 297   | 476   | 545   | 680   | 1189  | 1445  | 2549  |
| Flow rate                                   | С     | :fm  | 25   | 35   | 50   | 70    | 125   | 175   | 280   | 320   | 400   | 700   | 850   | 1500  |
| Connections                                 | ir    | nch  | 1/4  | 3/8  | 1/2  | 1/2   | 3/4   | 1     | 11/4  | 1½    | 1½    | 2     | 2½    | 3     |
|                                             | Α     | mm   | 70   | 70   | 70   | 100   | 100   | 100   | 122   | 122   | 146   | 146   | 210   | 210   |
|                                             | Α     | inch | 2,76 | 2,76 | 2,76 | 3,94  | 3,94  | 3,94  | 4,80  | 4,80  | 5,75  | 5,75  | 8,27  | 8,27  |
|                                             | В     | mm   | 25   | 25   | 25   | 35    | 35    | 35    | 42    | 42    | 52    | 52    | 67    | 67    |
| <b>5</b>                                    | В     | inch | 0,98 | 0,98 | 0,98 | 1,38  | 1,38  | 1,38  | 1,65  | 1,65  | 2,05  | 2,05  | 2,64  | 2,64  |
| Dimensions                                  | С     | mm   | 191  | 191  | 191  | 276   | 276   | 276   | 460   | 460   | 482   | 482   | 595   | 595   |
|                                             | С     | inch | 7,52 | 7,52 | 7,52 | 10,87 | 10,87 | 10,87 | 18,11 | 18,11 | 18,98 | 18,98 | 23,43 | 23,43 |
|                                             | D     | mm   | 90   | 90   | 90   | 110   | 110   | 110   | 150   | 150   | 180   | 180   | 200   | 200   |
|                                             | D     | inch | 3,54 | 3,54 | 3,54 | 4,33  | 4,33  | 4,33  | 5,91  | 5,91  | 7,09  | 7,09  | 7,87  | 7,87  |
| Weight                                      | ı     | kg   | 0,7  | 0,7  | 0,7  | 1,5   | 1,5   | 1,5   | 2,5   | 2,5   | 4     | 4     | 8,5   | 8,5   |
|                                             | ı     | bs   | 1,5  | 1,5  | 1,5  | 3,3   | 3,3   | 3,3   | 5,5   | 5,5   | 8,8   | 8,8   | 18,7  | 18,7  |

<sup>1.</sup> Flow is referred to an absolute pressure of 1 barg and temperature of 20°C



## **WD** - Water Detector

#### **Features & Benefits**

- ▶ 24/7 peace-of-mind at a reasonable cost
  - Water level as low as 3 cl detected
  - Can be installed at every critical application in the compressed air network
- ▶ Transparency of operation
  - · Alarm message on control panel
  - Potential-free contact to trigger alarm in control room
  - · Test button for manual drainage
- ▶ Easy mechanical and electrical installation

## **General Specifications**

- Water detector
- Operating pressure range: 0,2-16 barg / 2,9-232 psig
- ► Operating temperature range: 1-60°C / 34-140°F
- ▶ Power supply: 230VAC 50/60Hz



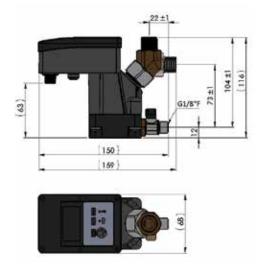
#### **Options:**



Power supply cable (2m)



Voltage-free contact cable (5m)




Despite all efforts to make dryers, water separators and drains reliable, a failure can never be ruled out. The consequence of condensate water in your pipe network and operations can be dramatic: from corrosion and ice formation to bad product quality and process malfunctioning.

The installation of a Pressure Dew Point (PDP) sensor downstream brings a solution, but is often a too large investment.

Pneumatech's Water Detector (WD) provides peace-of-mind at an affordable cost. The WD gives an alarm as soon as a 3cl water level is detected. This alarm message is visible, audible and can be routed to a control room thanks to the potential-free contact. The ball valve at the outlet is meant to release water after an alarm situation and is closed during normal operation.

| Technical Specifications for WD   |                                                                                               |
|-----------------------------------|-----------------------------------------------------------------------------------------------|
| General characteristics           | WD                                                                                            |
| First alarm level (cl)            | 3                                                                                             |
| Second alarm level (cl)           | 6,7                                                                                           |
| Max. power consumption (W)        | 10                                                                                            |
| Electrical connection             | Solenoid plug type B - 2+PE                                                                   |
| Potential free contact connection | M12 connector A-coding 4-pole<br>Both Normally Open (NO) and<br>Normally Closed (NC) possible |
| IP Protection                     | IP65                                                                                          |
| Physical characteristics          | WD                                                                                            |
| Length (mm / inch)                | 160 / 6,3                                                                                     |
| Width (mm / inch)                 | 69 / 2,71                                                                                     |
| Height (mm / inch)                | 116 / 4,5                                                                                     |
| Weight (kg / Lbs)                 | 0,6 / 1,32                                                                                    |
| Connections                       | WD                                                                                            |
| Inlet                             | G1/2", horizontal + vertical                                                                  |
|                                   |                                                                                               |
| Outlet                            | Ball valve for condensate removal                                                             |
| Outlet Features                   | Ball valve for condensate removal                                                             |
|                                   |                                                                                               |
| Features                          | WD                                                                                            |



#### **LD 100 - 204 - Zero loss drains**

#### Features & Benefits

- ▶ No loss of compressed air
  - · Automatic controlled drainage of condensate without any compressed
- Maximum reliability
  - Integrated filter to prevent dirt from entering the valve diaphragm
  - Auto-repair algorithm: forced opening/ closing cycles of the valve in case of malfunction
- Transparency of operation
  - · Alarm message on control panel when drain is blocked
  - Potential-free contact to trigger alarm in control room
  - · Test button for manual drainage
- ▶ Easy installation and maintenance
  - · Straightforward mechanical and electrical connections
  - · Wear kits available



- Zero-loss drain
- Operating pressure range: 0,2-16 barg / 2,9-232 psig
- Operating temperature range: 1-60°C/34-140°F
- ▶ Compressor capacity: from 180 up to 9500 m<sup>3</sup>/hr
- ▶ Power supply: 230VAC 50/60Hz 24VAC 50/60Hz 115VAC 50/60Hz



#### **Options:**



Mounting kits



Wear kits



Power supply cable (2m)



Voltage-free contact cable (5m)



The series of LD zero-loss drains permit a controlled drainage of condensate without any compressed air leaks. All LD drains are equipped with an integrated storage tank, inside which a level sensor has been mounted. The sensor is controlled by an intelligent electronic circuit based on an 8-bit microprocessor logic. All drain functions are displayed on the control panel\*. A test push button is available on the control panel for manual drainage. A built-in filter prevents the solenoid valve from clogging.

In case of trouble, the control circuit unlocks the drain pipes by carrying out a series of forced opening/closing cycles of the solenoid valve. If this is not enough, the malfunction is reported outside by an alarm with potential-free contact to draw the attention of maintenance staff\*.

The LD drains are produced in 10 different models with different flow rates. All versions are suitable for working with any type of condensate water.

\*not applicable for the smallest model LD100

| Technical specific                         | cations for | LD 100 - 204 | 1                 |           |              |                  |           |               |               |                               |
|--------------------------------------------|-------------|--------------|-------------------|-----------|--------------|------------------|-----------|---------------|---------------|-------------------------------|
| Pneumatech<br>Variant→<br>Specifications ↓ | LD100       | LD101        | LD 101<br>Compact | LD 101 L  | LD200        | LD200 L          | LD202     | LD202 L       | LD203         | LD204                         |
| General characteristics                    |             |              |                   |           |              |                  |           |               |               |                               |
| Drain capacity (I/h)                       | 1.6         | 4.03         | 3.3               | 5         | 8.07         | 10               | 16.14     | 20            | 85            | 200                           |
| Compressor capacity (m³/hr) (1)            | 180         | 450          | 378               | 450       | 900          | 900              | 1800      | 1800          | 9500          | 18000                         |
| Compressor capacity (cfm) (1)              | 106         | 265          | 222               | 265       | 530          | 530              | 1059      | 1059          | 5591          | 10594                         |
| Max. power consumption (W)                 |             |              |                   |           |              | 10               |           |               |               |                               |
| Electrical connection                      |             |              |                   |           | Solenoid plu | ıg type B – 2+Pl | ≣         |               |               |                               |
| Potential free contact connection          | /           |              |                   |           | M12 c        | onnector A-codi  | ng 4-pole |               |               |                               |
| IP Protection                              | IP65        | IP65         | IP65              | IP65      | IP 65        | IP 65            | IP 65     | IP 65         | IP 65         | IP 65                         |
| Physical characteristics                   |             |              |                   |           |              |                  |           |               |               |                               |
| Length (mm)                                | 136         | 163          | 160               | 163       | 163          | 163              | 163       | 163           | 188           | 247                           |
| Length (inch)                              | 5.4         | 6.4          | 6.3               | 6.4       | 6.4          | 6.4              | 6.4       | 6.4           | 7.4           | 9.7                           |
| Width (mm)                                 | 60          | 69           | 69                | 69        | 69           | 69               | 69        | 69            | 130           | 130                           |
| Width (inch)                               | 2.4         | 2.7          | 2.7               | 2.7       | 2.7          | 2.7              | 2.7       | 2.7           | 5.1           | 5.1                           |
| Height (mm)                                | 120         | 140          | 120               | 140       | 155          | 155              | 214       | 214           | 230           | 230                           |
| Height (inch)                              | 4.7         | 5.5          | 4.7               | 5.5       | 6.1          | 6.1              | 8.4       | 8.4           | 9.1           | 9.1                           |
| Weight (kg)                                | 0.42        | 0.6          | 0.5               | 0.6       | 0.7          | 0.7              | 1.2       | 1.2           | 2.8           | 3.45                          |
| Weight (Lbs)                               | 0.9         | 1.3          | 1.1               | 1.3       | 1.5          | 1.5              | 2.6       | 2.6           | 6.2           | 7.6                           |
| Connections                                |             |              |                   |           |              |                  |           |               |               |                               |
| Inlet                                      | G1/2"       | G1/2"        | G1/2" (F)         | G1/2" (F) | G1/2" (F)    | 2 x G1/2" (F)    | G1/2" (F) | 2 x G1/2" (F) | 2 x G1/2" (F) | 2 x G1/2" (F)<br>1x G3/4" (F) |
| Outlet                                     | 1 x Ø12     | 1 x Ø12      | 1 x Ø12           | 1 x Ø12   | 1 x Ø12      | 1 x Ø12          | 1 x Ø12   | 1 x Ø12       | 1 x Ø12       | 1 x Ø12                       |
| Features                                   |             |              |                   |           |              |                  |           |               |               |                               |
| Test button                                |             |              |                   |           |              | Yes              |           |               |               |                               |
| Indicative LEDs                            | No          |              |                   |           |              | Yes              |           |               |               |                               |
| Potential free alarm                       | No          |              |                   |           |              | Yes (NC/NO)      |           |               |               |                               |

<sup>1.</sup> The calculation of compressor capacity is based on the maximum condensate drainage of a compressor aftercooler in moderate climate conditions.

#### **TD** - Timer Drain

#### **Features & Benefits**

- Guaranteed reliability
  - Robust solenoid, made in Europe
  - Integrated Y-filter to prevent dirt from entering the valve
  - Large cross-section openings
- ▶ Endless flexibility
  - · No limitations in air flow
  - Cycle and valve opening intervals can be set independently of each other
- ▶ IP65 enclosed
- ▶ Transparency of operation
  - · Test button and operation indicator

Pneumatech's TD condensate drains discharge the condensate automatically, based on pre-set time intervals. The opening and closing times can be set with high flexibility, which make the drains suitable for almost all capacities. TD drains are selected in heavy-duty operations, where the large cross-sections opening and the simplicity of the drain are highly valued.

High-pressure TD drains are available on request.



|                               | Technical specifications                                  |
|-------------------------------|-----------------------------------------------------------|
| Pressure range                | 0-16 barg/ 0-232 psig                                     |
| Supply voltage                | 24VAC 50/60Hz & 230VAC 50/60Hz (CE)                       |
| Electrical connection         | DIN43650A                                                 |
| Inlet/outlet connections      | G ½" (CE)<br>NPT ½" (UL)                                  |
| Environmental protection      | IP65                                                      |
| Max. compressor capacity      | No limit                                                  |
| Min/Max operating temperature | 1-50°C/ 34-122°F                                          |
| Timer cycle                   | On: 0,5 - 10 s; Off: 0,5 - 45 min. including test feature |
| Valve type                    | 2/2 direct acting                                         |
| Valve orifice                 | 4.5 mm- 0,177"                                            |
| Valve seal                    | FKM                                                       |

#### MD - Mechanical zero-loss float drain

Pneumatech's MD drain discharges the condensate automatically and without compressed air losses up to 16 barg. A floating body rises and falls with the condensate level in a collecting chamber; and opens/closes a mechanical drain valve. The condensate collecting chamber is closed off from the compressed air flow when the drain is depressurized.

The drain is equipped with an integrated venting function, which prevents the risks of possible air slots. The MD has a well-proven, rugged metal design with threaded connections at inlet and outlet.



|                                         | Technical specifications                                                            |
|-----------------------------------------|-------------------------------------------------------------------------------------|
| Pressure range                          | 0-16 barg / 0-232 psig                                                              |
| Inlet/outlet connections                | G ½" (CE)                                                                           |
| Max. water discharge capacity           | 250 l/h @ 7 barg / 0,147 cfm @ 101 psig<br>360 l/h @ 16 barg / 0,212 cfm @ 232 psig |
| Max compressor capacity (without dryer) | 5.400 m³/hr / 3178 cfm                                                              |
| Length                                  | 156 mm / 6,14"                                                                      |
| Width                                   | 108 mm / 4,25"                                                                      |
| Height                                  | 111 mm / 4,37"                                                                      |
| Weight                                  | 0,9 kg / 2 lbs                                                                      |

#### **Features & Benefits**

- ▶ No loss of compressed air
  - · Automatic controlled drainage of condensate without any compressed air
- ▶ Plug-and-play solution
  - No power supply needed
  - No programming or calibration
- Guaranteed reliability
  - Large cross-section openings
  - Well-proven, rugged aluminum design
  - · Integrated venting function to prevent air slots
- ▶ Transparency of operation
  - · Manual drain valve for system discharge and operational check

## **ECOBOX 1 - Small oil water separator**

#### **Features & Benefits**

- ▶ Excellent performance
  - · 2-stage filtration with advanced adsorption media
  - · After separation, water contains oil levels below 15 ppm<sup>{1}</sup>
- ▶ Environmentally friendly all materials are 100% recyclable
- ▶ Compact footprint compact and lightweight design, optimized for small compressor installations
- ▶ Quick and easy installation and replacement – by means of a wall or plate mounting bracket
  - Optional sampling kit to verify outlet concentration on a regular base
- DIBT certified



#### **Options:**



Sampling Kit



The Pneumatech ECOBOX offers a compressor condensate cleaning solution with excellent performance for compressed air systems up to 100 m³/hr (60 cfm). It is designed to remove the oil traces from compressor condensate via 2-stage adsorption. The ECOBOX is able to clean the compressor condensate to

oil concentrations below 15 ppm1 by using a new, advanced filter medium. General country legislations for oil in water contamination are 20 ppm1. It is specifically designed to offer an affordable condensate cleaning solution for piston compressor and small screw compressor installations.

| Technical specifications for ECOBOX                   |                               |                             |                            |
|-------------------------------------------------------|-------------------------------|-----------------------------|----------------------------|
| Capacity                                              | 15 l/s - 51 m³/hr - 30 cfm    | 25 l/s - 85 m³/hr - 50 cfm  | 30 l/s - 100m³/hr - 60 cfm |
| Oil Residual                                          | 15 ppm                        | 15 ppm                      | 15 ppm                     |
| Expected Life Time - Cold Climate <sup>(2)(3)</sup>   | 6000                          | 4000                        | 3000                       |
| Expected Life Time - Normal Climate <sup>(2)(3)</sup> | 6000                          | 4000                        | -                          |
| Expected Life Time - Hot Climate <sup>(2)(3)</sup>    | 4000                          | -                           | -                          |
| Suitable compressor                                   | Piston Compressor<br>2-7,5 hp | Screw Compressor<br>3-10 hp | Screw Compressor<br>15 hp  |

|      |        |       | Poto    | d Flow <sup>(2)</sup> |             |      | Conn | etiono |        | Wei | abt | Dimensions |     |      |     |     |     |  |  |  |
|------|--------|-------|---------|-----------------------|-------------|------|------|--------|--------|-----|-----|------------|-----|------|-----|-----|-----|--|--|--|
| Туре |        | natet | I FIOW- |                       | Connections |      |      |        | Weight |     |     | mm         |     | inch |     |     |     |  |  |  |
|      |        | l/s   | m³/hr   | l/min                 | cfm         | Inle | et   | Out    | let    | kg  | lbs | А          | В   | С    | Α   | В   | С   |  |  |  |
|      | ECOBOX | <30   | <100    | <1800                 | <60         | 6 mm | 1/4" | 10 mm  | 3/8"   | 1   | 2.2 | 240        | 140 | 140  | 9.5 | 5.5 | 5.5 |  |  |  |

<sup>1. 15</sup>ppm is generally well below the acceptance level for disposal in the sewage, but due to strongly varying international and local regulations, it is the user's responsibility to consult local waste water discharge regulations and ensure compliance.

- a. Cold climate conditions: average ambient temperature of 20°C/ 68°F- relative humidity of 50 %
- b. Normal climate conditions: average ambient temperature of 25°C/75°F relative humidity of 60%
- c. Hot climate conditions: average ambient temperature of 35°/ 95°F relative humidity of 70 %
- 3. Pneumatech assumes as well maintained compressor plant and reasonable operating conditions. Performance on mineral or mineral-based lubricants should be as above, irrespective of compressor type, condensate drain technology or climate, provided the condensate produced is not a stable emulsion.



<sup>2.</sup> In tropical climates (high ambient temperatures and humidity levels), the air generally contains more water vapor. The extra condensate, generated during the compression and cooling process of the air, shortens the contact time in the device, leaving less time for the media to absorb the oil. Climatic conditions used in the table above are defines as follows:

## ECOBOX 2 - 4 - Oil water separators

#### **Features & Benefits**

- ▶ Excellent performance
  - 2-stage filtration with advanced adsorption media
  - After separation, water contains oil levels below 15 ppm<sup>(1)</sup>
  - Emulsion treatment possible (on request)
- ▶ Eliminating potential health issues
  - No standing or stagnant water
- ▶ Plug-and-play installation and service
  - · Connection points at inlet
  - · Compact footprint
  - No pre-soaking required
- ➤ Time-based service indicator and sampling kit (standard) to verify outlet concentration on a regular base.



#### **Options:**



Extra 4 Port Kit



19,49

989

38,94

4,000

Operating Hrs

Pneumatech extends its cost-competitive ECOBOX condensate cleaning solution with 3 more models, up to 1400 m<sup>3</sup>/hr. The models are designed according to the same success factors: reliable double adsorption with recycled glass media, compact footprint, and easy installation and service.

**Technical specifications for ECOBOX 2-4** 

Dimensions

Service life for filter (3)

Additionally the ECOBOX 2 - 4 has 4 connections points at the inlet; and a sample test point at the outlet.

11,10

654

25,75

4,000

Operating Hrs

|                                        |               | ECOBOX 2 | ECOBOX 3 | ECOBOX 4 |  |  |
|----------------------------------------|---------------|----------|----------|----------|--|--|
|                                        | l/s           | 53       | 158      | 389      |  |  |
| Maximum rated flow - normal climate(2) | m³/hr         | 190      | 570      | 1400     |  |  |
|                                        | cfm           | 112      | 335      | 824      |  |  |
|                                        | lelet         | 4x 12mm  | 4x 12mm  | 4x 12mm  |  |  |
| Connections                            | Inlet         | 4x 1/2"  | 4x 1/2"  | 4x 1/2"  |  |  |
| Connections                            | Outlet        | 12mm     | 20mm     | 20mm     |  |  |
|                                        | Outlet        | 1/2"     | 3/4"     | 3/4"     |  |  |
| Weight                                 | kg            | 2,7      | 3,6      | 14,8     |  |  |
| vveignt                                | lbs           | 6,0      | 7,9      | 32,6     |  |  |
|                                        | Length (mm)   | 215      | 345      | 432      |  |  |
|                                        | Length (inch) | 8,46     | 13,58    | 17,01    |  |  |
|                                        | Width (mm)    | 257      | 282      | 495      |  |  |

10,12

500

19,69

4,000

Operating Hrs

Width (inch)

Height (mm)

Height (inch)

<sup>1. 15</sup>ppm is generally well below the acceptance level for disposal in the sewage, but due to strongly varying international and local regulations, it is the user's responsibility to consult local waste water discharge regulations and ensure compliance.

<sup>2.</sup> In tropical climates (high ambient temperatures and humidity levels), the air generally contains more water vapor. The extra condensate, generated during the compression and cooling process of the air, shortens the contact time in the device, leaving less time for the media to absorb the oil. Climatic conditions used in the table above are defines as

a. Cold climate conditions: average ambient temperature of 20°C/  $68^{\circ}\text{F-}$  relative humidity of 50 %

b. Normal climate conditions: average ambient temperature of 25°C/  $75^\circ\text{F}$  - relative humidity of 50%

c. Hot climate conditions: average ambient temperature of 35°/95°F - relative humidity of 70 %

<sup>3.</sup> Pneumatech assumes as well maintained compressor plant and reasonable operating conditions. Performance on mineral or mineral-based lubricants should be as above, irrespective of compressor type, condensate drain technology or climate, provided the condensate produced is not a stable emulsion.

## OWS 75 - 5000 - Oil Water Separators

#### **Features & Benefits**

- ▶ Stable and reliable performance thanks to patented multistage filtration technology
  - Filtering all types of condensate & most condensate emulsions
  - No use of rotating equipment
  - No risk of spillage thanks to large capacity chamber design
- ▶ Eliminating all potential health issues
  - · No standing or stagnant water
  - · Optional anti-bacteria kit
- Accurate and quick indication of filter replacement thanks to maintenance indicator, blockage indicator and sampling kit
- DIBT certified
- Hassle-free maintenance with genuine service kits



#### **General Specifications**

- Oil Water Separator
- ▶ Designed outlet oil content : 15 mg/l
- ▶ Flow range at mild ambient conditions: 127-8500 m<sup>3</sup>/hr/ 75-5003 cfm

#### **Options:**



temperature kit



Photo Electric sensor & switch



Multiple inlet manifold



Anti-Bactria



Pneumatech offers a patented way to turn oily condensate into harmless water that can be drained away, while capturing the oil to be easily disposed of in an environmentally friendly manner. The multi-stage separation process, using both buoyant oleophilic filters and activated carbon ensures exceptional performance, lower disposal costs and trouble free operation.

Technical specifications for OWS 75 - OWS 5000 Pneumatech

The OWS range eliminates oil through multi-stage filtration rather than the conventional gravity systems which have limitations on the type of condensate that can be treated. As a result, the OWS separator capacity is not linked to the type of emulsion collected since it can treat the same volume of condensate whether saturated with mineral oil, semi-synthetic oil or polyglycol.

| Installation Type                    | Variant→ Specifications ↓ | Units                             | OWS 75 | OWS 200 | OWS 300 | OWS 750 <sup>7</sup> | OWS 1280 <sup>7</sup> | OWS 1750 <sup>7</sup> | OWS 2500 <sup>7</sup> | OWS 5000 <sup>7</sup> |
|--------------------------------------|---------------------------|-----------------------------------|--------|---------|---------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
|                                      | Cold Climate <sup>3</sup> | m³/hr <sup>(6)</sup>              | 234    | 649     | 972     | 2396                 | 4142                  | 5583                  | 7996                  | 15993                 |
|                                      | Cold Climates             | cfm <sup>(6)</sup>                | 138    | 382     | 572     | 1410                 | 2438                  | 3286                  | 4706                  | 9413                  |
| Complete installation(1)             | Mild Climate <sup>4</sup> | m³/hr <sup>(6)</sup>              | 127    | 342     | 522     | 1279                 | 2180                  | 2972                  | 4251                  | 8500                  |
| With Dryer <sup>(2)</sup>            | Willia Cilifiate          | cfm <sup>6</sup>                  | 75     | 201     | 307     | 753                  | 1283                  | 1749                  | 2502                  | 5003                  |
|                                      | Hot Climate <sup>5</sup>  | m <sup>3</sup> /hr <sup>(6)</sup> | 61     | 161     | 251     | 612                  | 1045                  | 1441                  | 2052                  | 4123                  |
|                                      | Tiot Climate              | cfm <sup>(6)</sup>                | 36     | 95      | 148     | 360                  | 615                   | 848                   | 1208                  | 2427                  |
|                                      | Cold Climate <sup>3</sup> | m³/hr <sup>(6)</sup>              | 379    | 1009    | 1495    | 3728                 | 6483                  | 8682                  | 12428                 | 24840                 |
|                                      | Oold Ollinate             | cfm <sup>(6)</sup>                | 223    | 594     | 880     | 2194                 | 3816                  | 5110                  | 7315                  | 14620                 |
| Complete installation <sup>(1)</sup> | Mild Climate <sup>4</sup> | m <sup>3</sup> /hr <sup>(6)</sup> | 161    | 425     | 630     | 1566                 | 2737                  | 3673                  | 5241                  | 10483                 |
| Without Dryer <sup>(2)</sup>         | Willia Cilifiate          | cfm <sup>(6)</sup>                | 95     | 250     | 371     | 922                  | 1611                  | 2162                  | 3085                  | 6170                  |
|                                      | Hot Climate⁵              | m³/hr <sup>(6)</sup>              | 71     | 178     | 272     | 685                  | 1189                  | 1585                  | 2270                  | 4538                  |
|                                      | Tiot Olimate              | cfm <sup>(6)</sup>                | 42     | 105     | 160     | 408                  | 700                   | 933                   | 1336                  | 2671                  |
| Connections                          |                           | inlet<br>(BSP/NPT)                | 1x1/2" | 2x1/2"  | 2x1/2"  | 2x3/4"               | 2x3/4"                | 2x3/4"                | 2x3/4"                | 2x3/4"                |
|                                      |                           | autlat.                           |        |         |         |                      |                       |                       |                       |                       |

1x1/2"

680

27

255

10

762

30

13

29

1x1/2"

680

27

255

10

762

30

15

33

1x3/4"

750

30

546

21,5

889

35

25

1x3/4"

750

30

546

21,5

1041

41

26

57

1x3/4"

945

37

650

26

1092

43

28

62

1x3/4"

945

37

695

27

1092

43

30

66

1x1"

945

37

1185

47

1092

43

60

132

- 1. Complete installation includes filters & air receiver
- All capacities are based on outlet oil content of 15 ppm and 12h operation. Derating needs to be proportionally applied.
   Cold climate refers to ambient temperature of 15°C/59°F and relative humidity of 60%.
   Mild climate refers to ambient temperature of 25°C/77°F and relative humidity of 60%.

outlet

(BSP/NPT)

mm

inch

mm

inch

mm

inch

kgs

lbs

1x1/2"

470

18,5

165

6,5

610

24

- 5. Hot climate refers to ambient temperature of 35°C/95°F and relative humidity of 70%
- 6. For poly-glycol based condensates, the capacity of each unit should be halved.

Length

Width

Height

Weight

7. OWS -750 and larger are 3 tower units.

Dimensions

Note: Capacity is based on the compressor running at 7 barg / 100 psig for 12 hours per day, with all condensate from the compressor, the air receiver, the filters and fridge dryer being piped into the unit.

#### CA - Air cooled aftercoolers

#### **Features & Benefits**

- ▶ Highly efficient axial fans
- ► Cooling down to 10°C/18°F above ambient
- ▶ Negligible pressure drop
- ▶ Robust construction and compact design
- ▶ Easy to dismantle for cleaning

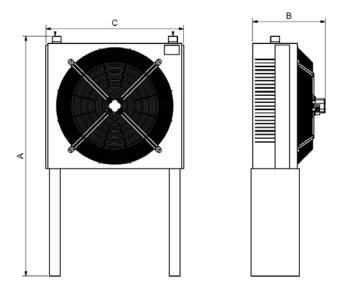
#### **General Specifications**

- ▶ Air cooled aftercooler
- Max. operating pressure: 15 barg / 218 psig
- ➤ Operating temperature: 170°C / 338°F
- ► Approach above ambient temperature: 10°C / 18°F
- ▶ Flow Rate: 66 to 4500 Nm³/hr (39 to 2649 cfm)





Compressed air will always be 100% saturated with water when it leaves a compressor. But also the outlet temperature has an important influence on the water load downstream the compressor. In order to minimize the load - and thus size - of the downstream refrigeration or adsorption dryer, it is therefore recommended to install a highly efficient aftercooler between the compressor and the dryer.


Pneumatech's air cooled aftercoolers CA 1-14 consist of a reliable

axial fan with supreme efficiency. The fan forces ambient air over the copper tubes and aluminum fins of the heat exchanger. Hence the compressed air is cooled down to only 10°C/18°F above ambient temperature.

In this way, the CA is a simple product, but with a major impact on the investment and lifecycle cost of your downstream equipment!

| Technical sp                               | ecificati        | ons for a    | ir coole     | d afterco     | olers CA      | 1-14          |               |               |               |                |                |                |                |                  |                  |
|--------------------------------------------|------------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|------------------|------------------|
| Pneumatech<br>Variant→<br>Specifications ↓ | Units            | CA 1         | CA 2         | CA 3          | CA 4          | CA 5          | CA 6          | CA 7          | CA 8          | CA 9           | CA 10          | CA 11          | CA 12          | CA 13            | CA 14            |
| Flow <sup>{1}</sup>                        | m³/hr            | 66           | 126          | 222           | 294           | 390           | 522           | 774           | 990           | 1260           | 1560           | 1890           | 2520           | 3090             | 4500             |
| FIOW                                       | cfm              | 39           | 74           | 131           | 173           | 230           | 307           | 456           | 583           | 742            | 918            | 1112           | 1483           | 1819             | 2649             |
| Connections                                | inch             | G1"          | G1"          | G1 1/2"       | G1 1/2"       | G2"           | G2"           | G2"           | G2 1/2"       | DN100          | DN100          | DN100          | DN100          | DN125            | DN125            |
| Power Supply                               | Ph / VAC<br>/ Hz | 1/230/50     | 1/230/50     | 3/400/50      | 3/400/50      | 3/400/50      | 3/400/50      | 3/400/50      | 3/400/50      | 3/400/50       | 3/400/50       | 3/400/50       | 3/400/50       | 3/400/50         | 3/400/50         |
| Fan                                        | Ø mm -W          | Ø250-<br>45W | Ø250-<br>45W | Ø350-<br>110W | Ø400-<br>130W | Ø500-<br>540W | Ø500-<br>540W | Ø630-<br>370W | Ø630-<br>370W | Ø800-<br>1470W | Ø800-<br>1470W | Ø800-<br>1470W | Ø800-<br>1470W | 2xØ800-<br>1470W | 2xØ800-<br>1470W |
|                                            | A (mm)           | 850          | 850          | 990           | 990           | 1175          | 1175          | 1325          | 1325          | 1800           | 1800           | 1800           | 2000           | 2090             | 2300             |
|                                            | A (inch)         | 33.5         | 33.5         | 39.0          | 39.0          | 46.3          | 46.3          | 52.2          | 52.2          | 70.9           | 70.9           | 70.9           | 78.7           | 82.3             | 90.6             |
| Dimensions                                 | B (mm)           | 300          | 300          | 310           | 310           | 440           | 440           | 490           | 490           | 660            | 660            | 790            | 795            | 830              | 850              |
| Dimensions                                 | B (inch)         | 11.8         | 11.8         | 12.2          | 12.2          | 17.3          | 17.3          | 19.3          | 19.3          | 26.0           | 26.0           | 31.1           | 31.3           | 32.7             | 33.5             |
|                                            | C (mm)           | 715          | 715          | 845           | 845           | 980           | 980           | 1130          | 1130          | 1590           | 1590           | 1560           | 1740           | 1850             | 2010             |
|                                            | C (inch)         | 28.1         | 28.1         | 33.3          | 33.3          | 38.6          | 38.6          | 44.5          | 44.5          | 62.6           | 62.6           | 61.4           | 68.5           | 72.8             | 79.1             |
|                                            | Kg               | 19           | 20           | 27            | 29            | 44            | 48            | 61            | 66            | 127            | 143            | 148            | 166            | 212              | 315              |
| Weight                                     | Lbs              | 41.9         | 44.1         | 59.5          | 63.9          | 97.0          | 105.8         | 134.5         | 145.5         | 280.0          | 315.3          | 326.3          | 366.0          | 467.4            | 694.5            |

<sup>1.</sup> Flow refers to 1 barg and 20°C at 7 barg operating pressure.



Note: In- and outlet connections can be chosen freely in the 4 corners of the heat exchanger

#### CW 1 - 17 - Water cooled aftercoolers

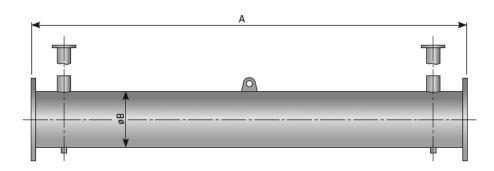
#### **Features & Benefits**

- ▶ Close temperature approach thanks to counter-current heat exchange
- ▶ Robust shell-and-tube design: stainless steel tubes within coated shell
- ▶ Negligible pressure drop
- ▶ Compact design
- ▶ Detailed calculations available on request

#### **General Specifications**

- Water cooled aftercooler
- ▶ Operating pressure of compressed air: 0-16 barg / 0-232 psig
- ▶ Operating temperature of compressed air: 2-200°C / 35-392°F
- ▶ Flow Rate: 132 to 45570 Nm³/hr / 78 to 26821 cfm






Compressed air will always be 100% saturated with water when it leaves a compressor. But also the outlet temperature has an important influence on the water load downstream the compressor. In order to minimize the load - and thus size - of the downstream refrigeration or adsorption dryer, it is therefore recommended to install a highly efficient aftercooler between the compressor and the dryer.

Pneumatech's water cooled aftercoolers CW 1-17 are robust shell-and-tube heat exchangers with excellent efficiency. Hot compressed air or gas passes through the stainless steel tubes while cooling water flows in counter-current around the tubes. This results in a minimal temperature difference between the outgoing compressed air and the incoming cooling water. Detailed design calculations are available on request.

| Technical spe                              | ecificatio | ons for | CW 1- | 17    |       |       |       |       |        |        |        |        |        |        |        |        |        |        |
|--------------------------------------------|------------|---------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Pneumatech<br>Variant→<br>Specifications ↓ | Units      | CW 1    | CW 2  | CW 3  | CW 4  | CW 5  | CW 6  | CW 7  | CW 8   | CW 9   | CW 10  | CW 11  | CW 12  | CW 13  | CW 14  | CW 15  | CW 16  | CW 17  |
| Flow <sup>{1}</sup>                        | m³/hr      | 132     | 235   | 367   | 661   | 955   | 1323  | 2205  | 3087   | 3969   | 7056   | 8967   | 11025  | 16170  | 22050  | 26460  | 33810  | 45570  |
| FIOW                                       | cfm        | 78      | 138   | 216   | 389   | 562   | 779   | 1298  | 1817   | 2336   | 4153   | 5278   | 6489   | 9517   | 12978  | 15574  | 19900  | 26821  |
| Connections Air side                       | inch       | DN 50   | DN 50 | DN 50 | DN 50 | DN 50 | DN 80 | DN 80 | DN 125 | DN 125 | DN 200 | DN 200 | DN 250 | DN 300 | DN 400 | DN 400 | DN 450 | DN 500 |
| Connections<br>Water side                  | inch       | DN 20   | DN 20 | DN 20 | DN 20 | DN 20 | DN 20 | DN 20 | DN 32  | DN 32  | DN 50  | DN 65  | DN 80  | DN 80  | DN 100 | DN 150 | DN 200 | DN 200 |
| Operating                                  | barg       | 0-16    | 0-16  | 0-16  | 0-16  | 0-16  | 0-16  | 0-16  | 0-16   | 0-16   | 0-16   | 0-16   | 0-10   | 0-10   | 0-10   | 0-10   | 0-10   | 0-10   |
| Pressure                                   | psig       | 0-232   | 0-232 | 0-232 | 0-232 | 0-232 | 0-232 | 0-232 | 0-232  | 0-232  | 0-232  | 0-232  | 0-232  | 0-232  | 0-232  | 0-232  | 0-232  | 0-232  |
|                                            | A (mm)     | 806     | 816   | 816   | 870   | 870   | 1500  | 1510  | 1300   | 1300   | 1300   | 1300   | 1300   | 1300   | 1300   | 1300   | 1300   | 1300   |
| D: .                                       | A (inch)   | 31.7    | 32.1  | 32.1  | 34.3  | 34.3  | 59.1  | 59.4  | 51.2   | 51.2   | 51.2   | 51.2   | 51.2   | 51.2   | 51.2   | 51.2   | 51.2   | 51.2   |
| Dimensions                                 | B (mm)     | 60.3    | 60.3  | 60.3  | 60.3  | 60.3  | 88.9  | 88.9  | 139.7  | 139.7  | 219    | 219    | 273    | 323.9  | 406    | 406    | 457    | 508    |
|                                            | B (inch)   | 2.4     | 2.4   | 2.4   | 2.4   | 2.4   | 3.5   | 3.5   | 5.5    | 5.5    | 8.6    | 8.6    | 10.7   | 12.8   | 16.0   | 16.0   | 18.0   | 20.0   |

<sup>1.</sup> Refers to 1 barg and 20°C at 7 barg operating pressure and inlet temperature of 120°C.



## The importance of defining the right purity

Purity has a substantial impact on the sizing and the energy efficiency of a gas generator. In order to increase purity, air needs to stay longer in contact with the adsorbent, meaning that the outlet flow needs to be reduced substantially.

It is thus very important to define the right purity for the right application. High purity levels are often recommended by gas companies to make the business case for on-site gas generators look worse and to defend their own business. There are however few applications requiring purity levels above 99,9% nitrogen purity.







## **Gas Generators**

Pneumatech designs and manufactures both standard and engineered on-site gas generator products. Nitrogen and oxygen generators are available with Pressure Swing Adsorption (PSA) technology, resulting in nitrogen purities up to 99,999% and oxygen purities up to 95%. Membrane technology is also offered for nitrogen purity levels up to 99,5%.

Pre-defined high-pressure nitrogen skids have been developed as a plug-and-play solution for various applications like laser-cutting. Our engineering department hence becomes your best partner for all kinds of special requests.

## PPNG 6 - 68 S - Nitrogen generator with Pressure Swing Adsorption technology

#### **Features & Benefits**

- ▶ Energy saving control
- Outstanding air factors thanks to backflow pressurization
- High-quality, high-efficient Carbon Molecular Sieves selected for the right application
- Guaranteed purity
  - Zirconia sensors for reliable purity measurement
  - · Dedicated high purity variants
  - Purity certificates
- ▶ Designed & tested for cyclic load
- ► Reliable, efficient and low-maintenance angle seat valves
- Carefully designed exhaust silencers resulting in quiet and safe operation of the generator
- ▶ Optimal control and monitoring thanks to Purelogic<sup>™</sup> Controller

# Pong pneumatich Variagementer Livia

#### **General Specifications**

- Pressure Swing Adsorption (PSA) nitrogen generators - extruded profile design
- Nitrogen purity achievable:95% 99.9% (PCT Variant) & 99.95%-99.999% (PPM variant)
- ▶ Inlet pressure range: 4-13 barg / 60-189 psig
- ▶ Inlet temperature range: 5-60°C / 41-140°F
- Required inlet air quality: 1-4-1 according to ISO 8573-1:2010
- ▶ Power supply: 115-230VAC / 50-60Hz

#### **Options:**







Flow meter



PDP sensor kit



The PPNG 6-68s series provides an efficient source of nitrogen for use in various industries like food and beverage, pharma, electronics and plastics. PPNG nitrogen generators use Pressure Swing Adsorption technology to extract nitrogen molecules from the compressed air; and can reach purities from 95% up to 99,999%. Nitrogen pressures can go up to 12 barg without the need for an additional booster. The air factors of the PPNG6-68s range are outstanding, making the return on investment very attractive compared to traditional gas supply.

With its PPNG 6-68s series, Pneumatech follows the plug and play philosophy. Pressure vessels, valves, exhaust system,

sensors and controls are all integrated within a compact canopy, designed for easy transport, installation and service.

The Purelogic<sup>™</sup> is the central brain of the nitrogen generator. It optimizes operating costs thanks to the availability of the energy saving control; ensures maximum reliability by keeping track of the most important parameters of the generator; and offers impressive control and monitoring capabilities.

The optional flow meter and inlet pressure dew point sensor can be added to the scope of supply to further exploit the monitoring capabilities of the Purelogic™ controller.

| Technical spec                                | ificatio | ns for I   | PPNG 6-68            | s          |            |            |             |             |             |             |             |             |             |             |             |             |             |
|-----------------------------------------------|----------|------------|----------------------|------------|------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Specifications                                | Units    | Variant    | Product→<br>Purity ↓ | PPNG<br>6S | PPNG<br>7S | PPNG<br>9S | PPNG<br>12S | PPNG<br>15S | PPNG<br>18S | PPNG<br>22S | PPNG<br>28S | PPNG<br>30S | PPNG<br>37S | PPNG<br>41S | PPNG<br>50S | PPNG<br>63S | PPNG<br>68S |
| Name at force                                 |          | PCT        | 95                   | 22.3       | 28.8       | 35.2       | 44.7        | 57.5        | 70.3        | 86.3        | 105.5       | 115.0       | 140.7       | 159.7       | NA          | NA          | NA          |
| Nominal free nitrogen delivery <sup>{1}</sup> | m³/hr    | (%)        | 99.9                 | 5.9        | 7.6        | 9.3        | 11.8        | 15.2        | 18.6        | 22.8        | 27.9        | 30.4        | 37.2        | 45.6        | 55.8        | 59.1        | 64.7        |
|                                               |          | PPM<br>(%) | 99.999               | 1.7        | 2.2        | 2.7        | 3.4         | 4.4         | 5.3         | 7.1         | 8.7         | 9.5         | 11.6        | 14.3        | 17.4        | 20.5        | 23.3        |
| Nominal air                                   |          | PCT        | 95                   | 43.1       | 55.5       | 67.9       | 86.3        | 111.0       | 135.8       | 166.5       | 203.7       | 222.0       | 271.5       | 308.3       | NA          | NA          | NA          |
| consumption <sup>{1}</sup>                    | m³/hr    | (%)        | 99.9                 | 23.9       | 30.8       | 37.7       | 47.9        | 61.6        | 75.3        | 92.4        | 113.0       | 123.2       | 150.7       | 182.5       | 223.3       | 226.8       | 258.6       |
|                                               |          | PPM<br>(%) | 99.999               | 11.5       | 14.8       | 18.1       | 22.9        | 29.5        | 36.1        | 47.4        | 58.0        | 63.2        | 77.3        | 93.4        | 114.2       | 122.4       | 152.3       |
|                                               |          | PCT        | 95                   | 1.93       | 1.93       | 1.93       | 1.93        | 1.93        | 1.93        | 1.93        | 1.93        | 1.93        | 1.93        | 1.93        | NA          | NA          | NA          |
| Air Factor                                    | -        | (%)        | 99.9                 | 4.05       | 4.05       | 4.05       | 4.05        | 4.05        | 4.05        | 4.05        | 4.05        | 4.05        | 4.05        | 4.00        | 4.00        | 3.84        | 4.00        |
|                                               |          | PPM<br>(%) | 99.999               | 6.8        | 6.8        | 6.8        | 6.8         | 6.8         | 6.8         | 6.7         | 6.7         | 6.7         | 6.7         | 6.6         | 6.6         | 6.0         | 6.6         |
| Pressure dewpoint outlet                      | °C /°F   |            |                      | -40        | -40        | -40        | -40         | -40         | -40         | -40         | -40         | -40         | -40         | -40         | -40         | -40         | -40         |
|                                               | barg     | PCT        | 95                   | 0.8        | 0.8        | 0.8        | 1           | 1           | 1.1         | 1.2         | 1.2         | 1.2         | 1.2         | 1.4         | NA          | NA          | NA          |
| Maximum pressure drop                         | barg     | (%)        | 99.9                 | 0.5        | 0.5        | 0.5        | 0.6         | 0.6         | 0.7         | 0.7         | 0.7         | 0.7         | 0.7         | 0.9         | 0.9         | 0.9         | 1           |
|                                               | barg     | PCT<br>(%) | 99.999               | 0.3        | 0.3        | 0.4        | 0.4         | 0.4         | 0.4         | 0.4         | 0.5         | 0.6         | 0.6         | 0.6         | 0.7         | 0.7         | 0.7         |
| Length                                        | mm       |            |                      | 798        | 798        | 798        | 798         | 798         | 798         | 1422        | 1422        | 1422        | 1422        | 1422        | 1422        | 1422        | 1422        |
| Longin                                        | Inch     |            |                      | 31         | 31         | 31         | 31          | 31          | 31          | 56          | 56          | 56          | 56          | 56          | 56          | 56          | 56          |
| Width                                         | mm       |            |                      | 840        | 840        | 840        | 840         | 840         | 840         | 840         | 840         | 840         | 840         | 970         | 970         | 970         | 970         |
| Widti                                         | Inch     |            |                      | 33         | 33         | 33         | 33          | 33          | 33          | 33          | 33          | 33          | 33          | 38          | 38          | 38          | 38          |
| Height                                        | mm       |            |                      | 2022       | 2022       | 2022       | 2022        | 2022        | 2022        | 2022        | 2022        | 2022        | 2022        | 2022        | 2022        | 2022        | 2022        |
| i loigiit                                     | Inch     |            |                      | 80         | 80         | 80         | 80          | 80          | 80          | 80          | 80          | 80          | 80          | 80          | 80          | 80          | 80          |
| Mass                                          | Kg       |            |                      | 244        | 257        | 270        | 306         | 339         | 360         | 599         | 627         | 663         | 716         | 805         | 1018        | 1191        | 1191        |
| madd                                          | Lbs      |            |                      | 538        | 567        | 595        | 675         | 747         | 794         | 1321        | 1382        | 1462        | 1579        | 1775        | 2244        | 2626        | 2626        |
| Inlet and outlet connections                  | G/NPT    |            |                      | 1"         | 1"         | 1"         | 1"          | 1"          | 1"          | 1"          | 1"          | 1"          | 1"          | 1"          | 1"          | 1"          | 1"          |

<sup>1.</sup> Flow is measured at Reference Conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 20°C & Air Inlet Quality of ISO 8573-1:2010 class 1-4-1

## PPNG 6 - 68 HE - Nitrogen generator with Pressure Swing Adsorption technology

#### **Features & Benefits**

- Advanced energy saving control
  - Reduced air consumption at low nitrogen demand
  - Also compensates for altering ambient conditions and purity settings
  - No compressed air use when no nitrogen is consumed
- Outstanding air factors thanks to back-flow pressurization
- ▶ High-quality, high-efficient Carbon Molecular Sieves selected for the right application
- Guaranteed purity
  - Automatically regulates to the requested nitrogen pressure and purity
  - Zirconia sensors for reliable purity measurement
- ▶ Designed & tested for cyclic load
- ▶ Optimal control and monitoring thanks to Purelogic<sup>™</sup> Controller
  - Self-protective monitoring of the feed air quality
  - Feed-air blow-off in case of contamination
  - Nitrogen flow, purity and pressure measured and controlled
  - Automatic start-up

#### **General Specifications**

- Pressure Swing Adsorption (PSA) nitrogen generators - extruded profile design
- Nitrogen purity achievable:95% 99.9% (PCT Variant) & 99.95%-99.999% (PPM variant)
- ▶ Inlet pressure range: 4-13 barg / 60-189 psig
- ▶ Inlet temperature range: 5-60°C / 41-140°F
- Required inlet air quality:1-4-1 according to ISO 8573-1:2010
- ▶ Power supply: 115-230VAC / 50-60Hz



#### **Options:**



Wooden packaging



The PPNG6-68HE series is Pneumatech's premium on-site nitrogen solution for low to medium flows, with best-in-class performance and the most complete scope of supply.

The generator has outstanding air factors at full load thanks to the use of highly efficient Carbon Molecular Sieves (CMS) and back-flow pressurization.

The air consumption is also optimized at reduced nitrogen flow or pressure demands, thanks to the advanced energy saving algorithm, which automatically adjusts the cycle times of the generator.

The control and monitoring capabilities of the PPNG6-68 HE are truly impressive. Purity is guaranteed at all times by opening the consumer valve only at the requested purity level and flushing nitrogen when purity is not reached. Feed air quality is controlled by monitoring temperature, pressure and PDP. The feed air is blown off in case of contamination. All risks of possible CMS damage are eliminated thanks to the automatic start-up feature.

| Technical s                  | pecifi    | catior       | s for PPNC           | 6 - PP       | NG 68 H      | 1E           |               |               |               |               |               |               |               |               |               |               |               |
|------------------------------|-----------|--------------|----------------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Specifications               | Units     | Vari-<br>ant | Product→<br>Purity ↓ | PPNG<br>6 HE | PPNG<br>7 HE | PPNG<br>9 HE | PPNG<br>12 HE | PPNG<br>15 HE | PPNG<br>18 HE | PPNG<br>22 HE | PPNG<br>28 HE | PPNG<br>30 HE | PPNG<br>37 HE | PPNG<br>41 HE | PPNG<br>50 HE | PPNG<br>63 HE | PPNG<br>68 HE |
|                              |           | PCT          | 95                   | 18.4         | 23.4         | 28.8         | 36.4          | 46.8          | 57.2          | 70.2          | 86.0          | 93.6          | 114.8         | 128.9         | 157.7         | NA            | NA            |
| Nominal free nitrogen        | m³/hr     | (%)          | 99.9                 | 5.8          | 7.2          | 9.0          | 11.5          | 14.8          | 18.0          | 22.0          | 26.6          | 29.2          | 35.6          | 40.7          | 49.7          | 61.9          | 66.6          |
| delivery <sup>{1}</sup>      |           | PPM<br>(%)   | 99.999               | 1.9          | 2.5          | 2.9          | 4.0           | 5.0           | 6.1           | 7.9           | 9.7           | 10.4          | 13.0          | 15.8          | 19.4          | 22.7          | 25.9          |
|                              |           | PCT          | 95                   | 33.8         | 43.6         | 53.3         | 67.7          | 87.1          | 106.6         | 130.7         | 159.8         | 174.2         | 213.1         | 243.7         | 298.1         | NA            | NA            |
| Nominal air consumption      | m³/hr     | (%)          | 99.9                 | 18.0         | 23.4         | 28.4         | 36.4          | 46.8          | 56.9          | 69.8          | 85.7          | 93.2          | 114.1         | 135.7         | 166.0         | 196.9         | 221.0         |
| ·                            |           | PPM<br>(%)   | 99.999               | 12.2         | 15.5         | 19.1         | 24.1          | 31.3          | 38.2          | 44.3          | 54.0          | 59.0          | 72.4          | 88.6          | 108.4         | 124.2         | 144.4         |
|                              |           | PCT          | 95                   | 1.86         | 1.86         | 1.86         | 1.86          | 1.86          | 1.86          | 1.86          | 1.86          | 1.86          | 1.86          | 1.89          | 2             | NA            | NA            |
| Air Factor                   | -         | (%)          | 99.9                 | 3.19         | 3.19         | 3.19         | 3.19          | 3.19          | 3.19          | 3.19          | 3.19          | 3.19          | 3.19          | 3.33          | 3.33          | 3.18          | 3.33          |
|                              |           | PPM<br>(%)   | 99.999               | 6.3          | 6.3          | 6.3          | 6.3           | 6.3           | 6.3           | 5.6           | 5.6           | 5.6           | 5.6           | 5.6           | 5.6           | 5.5           | 5.6           |
| Pressure dewpoint outlet     | °C /°F    |              |                      | -40          | -40          | -40          | -40           | -40           | -40           | -40           | -40           | -40           | -40           | -40           | -40           | -40           | -40           |
|                              |           | PCT          | 95                   | 0.4          | 0.4          | 0.4          | 0.5           | 0.5           | 0.5           | 0.6           | 0.6           | 0.6           | 0.6           | 0.6           | 0.9           | 0.9           | NA            |
| Maximum pressure drop        |           | (%)          | 99.9                 | 0.3          | 0.3          | 0.3          | 0.3           | 0.3           | 0.3           | 0.3           | 0.3           | 0.3           | 0.3           | 0.5           | 0.5           | 0.6           | 0.6           |
|                              |           | PCT<br>(%)   | 99.999               | 0.2          | 0.2          | 0.2          | 0.2           | 0.2           | 0.2           | 0.2           | 0.2           | 0.2           | 0.2           | 0.2           | 0.3           | 0.3           | 0.3           |
| Length                       | mm        |              |                      | 775          | 775          | 775          | 775           | 775           | 775           | 1400          | 1400          | 1400          | 1400          | 1400          | 1400          | 1400          | 1400          |
| Lengin                       | Inch      |              |                      | 31           | 31           | 31           | 31            | 31            | 31            | 55            | 55            | 55            | 55            | 55            | 55            | 55            | 55            |
| Width                        | mm        |              |                      | 840          | 840          | 840          | 840           | 840           | 840           | 840           | 840           | 840           | 840           | 840           | 840           | 840           | 970           |
| Widti                        | Inch      |              |                      | 33           | 33           | 33           | 33            | 33            | 33            | 33            | 33            | 33            | 33            | 33            | 33            | 33            | 38            |
| Height                       | mm        |              |                      | 2015         | 2015         | 2015         | 2015          | 2015          | 2015          | 2015          | 2015          | 2015          | 2015          | 2015          | 2015          | 2015          | 2015          |
| grit                         | Inch      |              |                      | 79           | 79           | 79           | 79            | 79            | 79            | 79            | 79            | 79            | 79            | 79            | 79            | 79            | 79            |
| Mass                         | Kg        |              |                      | 264          | 277          | 290          | 326           | 359           | 380           | 619           | 647           | 683           | 736           | 865           | 1038          | 1211          | 1211          |
|                              | Lbs       |              |                      | 582          | 611          | 639          | 719           | 791           | 838           | 1365          | 1426          | 1506          | 1623          | 1907          | 2288          | 2670          | 2670          |
| Inlet and outlet connections | G/<br>NPT |              |                      | 1"           | 1"           | 1"           | 1"            | 1"            | 1"            | 1"            | 1"            | 1"            | 1"            | 1"            | 1"            | 1"            | 1"            |

<sup>1.</sup> Flow is measured at Reference Conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 20°C & Air Inlet Quality of ISO 8573-1:2010 class 1-4-1

## PPNG SKID - High-pressure nitrogen skid

#### Are you looking for a true plugand-play solution that delivers onsite nitrogen at the lowest cost?

Pneumatech has developed compact and pre-commissioned skids in two pressure versions.

The 40 barg version offers high-pressure nitrogen for direct use; with the 300 barg version you can fill the skid-mounted cylinders to create your own supply. These bottles can serve as your nitrogen back-up supply, but also allow you to downsize your system in case of fluctuating demand. With its supreme efficiency and reliability, ease of use and small footprint, the high-pressure skid is the ideal solution for laser cutting applications.

#### PPNGs nitrogen generator

- Guaranteed purity
- Outstanding air factors
- ▶ Energy saving control
- ▶ Optimal control and monitoring thanks to Purelogic™ controller

#### 4-stage filter train for guaranteed purity and reliability

- ▶ General-purpose and high-efficient oil-coalescing filters, activated carbon tower and high-efficient particle filter
- ▶ Guaranteed air quality of class 1:4:1 (according to ISO8573-1:2010) at the inlet of the nitrogen generator

#### Variable speed compressor with integrated refrigerant dryer

- ▶ Closely follow the air demand by automatic adjustment of the motor speed
- ▶ Direct driven transmission for outstanding energy efficiency and reliability
- Very quiet operation due to improved noise insulation
- ▶ Compact design, also thanks to integrated refrigerant dryer





| Technical specific                                          | ations for | PPNG skid               |                         |                          |                          |                         |                              |                              |                              |
|-------------------------------------------------------------|------------|-------------------------|-------------------------|--------------------------|--------------------------|-------------------------|------------------------------|------------------------------|------------------------------|
| Pneumatech variant                                          |            | PPNG SKID 1             | PPNG SKID 2             | PPNG SKID 3              | PPNG SKID 4              | PPNG SKID 5             | PPNG SKID 6                  | PPNG SKID 7                  | PPNG SKID 8                  |
| N <sub>2</sub> Pressure                                     |            | 40 barg                 | 40 barg                 | 40 barg                  | 40 barg                  | 300 barg                | 300 barg                     | 300 barg                     | 300 barg                     |
| N <sub>2</sub> Capacity <sup>(1)</sup> (m <sup>3</sup> /hr) | 99.90%     | 10.5                    | 21                      | 42                       | 73.1                     | 13.4                    | 21                           | 42                           | 73.1                         |
| N <sub>2</sub> Capacity (III /III)                          | 99.99%     | 5.3                     | 10.5                    | 22.1                     | 41.1                     | 6.7                     | 10.5                         | 22.1                         | 41.1                         |
| Compressor with<br>Integrated Dryer                         |            | 8kW                     | 11kW                    | 22kW                     | 36kW                     | 8kW                     | 11kW                         | 22kW                         | 36kW                         |
| Filter train                                                |            | G-C-VT-D                | G-C-VT-D                | G-C-VT-D                 | G-C-VT-D                 | G-C-VT-D                | G-C-VT-D                     | G-C-VT-D                     | G-C-VT-D                     |
| Air receiver                                                |            | 500L 11Bar<br>CE Vessel | 500L 11Bar<br>CE Vessel | 1000L 11Bar<br>CE Vessel | 1500L 11Bar<br>CE Vessel | 500L 11Bar<br>CE Vessel | 500L 11Bar<br>CE Vessel      | 1000L11Bar<br>CE Vessel      | 1500L 11Bar<br>CE Vessel     |
| N <sub>2</sub> Generator                                    |            | PPNG9S<br>PPM IEC       | PPNG18S<br>PPM IEC      | PPNG37S<br>PPM IEC       | PPNG68S<br>PPM IEC       | PPNG12S<br>PPM IEC      | PPNG18S<br>PPM IEC           | PPNG37S<br>PPM IEC           | PPNG68S<br>PPM IEC           |
| N <sub>2</sub> Receiver                                     |            | 500L 11Bar<br>CE Vessel | 500L 11Bar<br>CE Vessel | 1000L 11Bar<br>CE Vessel | 1500L 11Bar<br>CE Vessel | 500L 11Bar<br>CE Vessel | 500L 11Bar<br>CE Vessel      | 1000L 11Bar<br>CE Vessel     | 1500L 11Bar<br>CE Vessel     |
| Particulate Filter                                          |            | D                       | D                       | D                        | D                        | D                       | D                            | D                            | D                            |
| N <sub>2</sub> Booster                                      |            | 15 hp 40 barg           | 15 hp 40 barg           | 15 hp 40 barg            | 15 hp 40 barg            | 10 hp 300 barg          | 10 hp 300 barg               | 15 hp 300 barg               | 2 x 15 hp 300<br>barg        |
| HP Storage                                                  |            | 500L/45 barg            | 500L/45 barg            | 1000L/45 barg            | 1000L/45 barg            | 2 cylinder 300<br>barg  | 12 cylinder rack<br>300 barg | 12 cylinder rack<br>300 barg | 16 cylinder rack<br>300 barg |

<sup>1.</sup> Flow specified is at the outlet of the PPNGs Generator measured at Reference Conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 20°C & Air Inlet Quality of ISO 8573-1:2010 class 1-4-1



#### Nitrogen storage: 40 barg receiver or 300 barg cylinders

- ▶ Bottle rack consisting of up to 16 highpressure bottles
- ▶ Allows to shave peak demands

#### Nitrogen booster: 40 barg or 300 barg

- ▶ IE3-standard energy efficient motor
- ▶ Automatic condensate drain, reducing pressure losses by 80%
- ▶ Compressor block made of light alloys with high thermal efficiency, resulting in outstanding reliability
- ▶ Low noise levels thanks to sound insulated panels

#### PPNG 150 - 800 HE - Nitrogen generators with Pressure Swing Adsorption technology

#### **Features & Benefits**

- Advanced energy saving control
  - Reduced air consumption at low nitrogen demand
  - Also compensates for altering ambient conditions and purity settings
  - No compressed air use when no nitrogen is consumed
- Outstanding air factors thanks to back-flow pressurization
- High-quality, high-efficient Carbon Molecular Sieves selected for the right application
- Guaranteed purity
  - Automatically regulates to the requested nitrogen pressure and purity
  - Zirconia sensors for reliable purity measurement
- ▶ Designed & tested for cyclic load
- ► Optimal control and monitoring thanks to Purelogic™ Controller
  - Self-protective monitoring of the feed air quality
  - Feed-air blow-off in case of contamination
  - Nitrogen flow, purity and pressure measured and controlled
  - Automatic start-up

#### **General Specifications**

- Nitrogen purity achievable: 95%-99.9% (PCT Variant) & 99.95%-99.999% (PPM variant)
- ▶ Inlet pressure range: 5-10 barg/72-150 psig
- Ambient temperature range: 5-45°C /41-113°F
- ▶ Inlet temperature range: 5-55°C / 41-131°F
- Required inlet air quality: 1-4-1 according to ISO 8573-1:2010
- ▶ Power supply: 230VAC / 50-60Hz



#### **Options**



Wooden packaging



**Outlet PDP sensor** 



The PPNG150-800 HE series is Pneumatech's premium on-site nitrogen solution for high flows, with best-in-class performance and the most complete scope of supply.

The generator has outstanding air factors at full load thanks to the use of highly efficient Carbon Molecular Sieves (CMS) and back-flow pressurization.

The air consumption is also optimized at reduced nitrogen flow or pressure demands, thanks to the advanced energy saving algorithm, which automatically adjusts the cycle times of the generator.

The control and monitoring capabilities of the PPNG150-800 HE are truly impressive. Purity is guaranteed at all times by opening the consumer valve only at the requested purity level and flushing nitrogen when purity is not reached. Feed air quality is controlled by monitoring temperature, pressure and PDP. The feed air is blown off in case of contamination. All risks of possible CMS damage are eliminated thanks to the automatic start-up feature.

| Technical sp                           | Technical specifications for PPNG150 - 800 HE  Product → PPNG PPNG PPNG PPNG PPNG PPNG PPNG PP |         |                     |                |                |                |                |                |                |                |                |                |  |  |
|----------------------------------------|------------------------------------------------------------------------------------------------|---------|---------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--|--|
| Specifications                         | Units                                                                                          | Variant | Product → Purity ↓  | PPNG<br>150 HE | PPNG<br>200 HE | PPNG<br>250 HE | PPNG<br>300 HE | PPNG<br>350 HE | PPNG<br>400 HE | PPNG<br>500 HE | PPNG<br>650 HE | PPNG<br>800 HE |  |  |
| Nominal free                           |                                                                                                | DOT(0/) | 95%                 | 469            | 604            | 734            | 865            | 1063           | 1244           | 1607           | 2038           | 2592           |  |  |
| Nitrogen                               | m³/hr                                                                                          | PCT(%)  | 99.9%               | 169            | 218            | 265            | 312            | 384            | 449            | 580            | 735            | 935            |  |  |
| delivery <sup>{1}</sup>                |                                                                                                | PPM     | 99.999%             | 75             | 96             | 117            | 138            | 169            | 198            | 253            | 321            | 408            |  |  |
|                                        |                                                                                                | DCT(9/) | 95%                 | 886            | 1142           | 1387           | 1635           | 2010           | 2351           | 3036           | 3852           | 4898           |  |  |
| Nominal air consumption <sup>{1}</sup> | m³/hr                                                                                          | PCT(%)  | 99.9%               | 549            | 708            | 859            | 1013           | 1245           | 1456           | 1881           | 2386           | 3034           |  |  |
|                                        |                                                                                                | PPM     | 99.999%             | 377            | 486            | 590            | 695            | 854            | 999            | 1303           | 1653           | 2102           |  |  |
|                                        |                                                                                                | PCT(%)  | 95%                 | 1.9            | 1.9            | 1.9            | 1.9            | 1.9            | 1.9            | 1.9            | 1.9            | 1.9            |  |  |
| Air factor                             |                                                                                                | FO1(78) | 99.9%               | 3.2            | 3.2            | 3.2            | 3.2            | 3.2            | 3.2            | 3.2            | 3.2            | 3.2            |  |  |
|                                        |                                                                                                | PPM     | 99.999%             | 5.1            | 5.1            | 5.1            | 5.1            | 5.1            | 5.1            | 5.2            | 5.2            | 5.2            |  |  |
| Pressure dewpoi                        | nt                                                                                             | °C/°F   |                     | -40            | -40            | -40            | -40            | -40            | -40            | -40            | -40            | -40            |  |  |
| Maximum                                |                                                                                                | PCT(%)  | 95-99.9%            | 1,5 - 1        | 1,5 - 1        | 1,5 - 1        | 1,5 - 1        | 1,5 - 1        | 1,5 - 1        | 1,5 - 1        | 1,5 - 1        | 1,5 - 1        |  |  |
| pressure drop<br>(barg)                |                                                                                                | PPM     | 99.95% -<br>99.999% | 0.5            | 0.5            | 0.5            | 0.5            | 0.5            | 0.5            | 0.5            | 0.5            | 0.5            |  |  |
| Langth                                 | mm                                                                                             |         |                     | 1800           | 1800           | 1800           | 2300           | 2300           | 2300           | 3120           | 3120           | 3120           |  |  |
| Length                                 | Inch                                                                                           |         |                     | 70.9           | 70.9           | 70.9           | 90.6           | 90.6           | 90.6           | 122.8          | 122.8          | 122.8          |  |  |
| Width                                  | mm                                                                                             |         |                     | 2230           | 2570           | 2650           | 2720           | 2850           | 2900           | 3660           | 3760           | 3860           |  |  |
| Widii                                  | Inch                                                                                           |         |                     | 87.8           | 101.2          | 104.3          | 107.1          | 112.2          | 114.2          | 144.1          | 148.0          | 152.0          |  |  |
| Height                                 | mm                                                                                             |         |                     | 2610           | 2640           | 2625           | 3020           | 3050           | 3040           | 3970           | 4175           | 4405           |  |  |
| rieigni                                | Inch                                                                                           |         |                     | 102.8          | 103.9          | 103.3          | 118.9          | 120.1          | 119.7          | 156.3          | 164.4          | 173.4          |  |  |
| Mass                                   | Kg                                                                                             |         |                     | 3200           | 3800           | 4800           | 6400           | 7000           | 7700           | 10300          | 12000          | 14200          |  |  |
| iviass                                 | lbs                                                                                            |         |                     | 7054.8         | 8377.6         | 10582.2        | 14109.6        | 15432.3        | 16975.6        | 22707.6        | 26455.4        | 31305.6        |  |  |
| N2 & Air<br>Receiver size              | liters                                                                                         |         |                     | 3000           | 4000           | 5000           | 6000           | 8000           | 8000           | 12000          | 16000          | 20000          |  |  |
| Nitrogen<br>to buffer<br>connection    | DN                                                                                             |         |                     | 80             | 80             | 80             | 80             | 80             | 80             | 100            | 100            | 100            |  |  |
| Nitrogen                               | DN                                                                                             | PCT(%)  | 95-99.9%            | 50             | 50             | 50             | 80             | 80             | 80             | 100            | 100            | 100            |  |  |
| from buffer connection                 | DN                                                                                             | PPM     | 99.95% -<br>99.999% | 40             | 40             | 40             | 40             | 40             | 40             | 50             | 50             | 50             |  |  |
| Nitrogen outlet                        | DN                                                                                             | PCT(%)  | 95-99.9%            | 50             | 50             | 50             | 80             | 80             | 80             | 100            | 100            | 100            |  |  |
| connection                             | DN                                                                                             | PPM     | 99.95% -<br>99.999% | 50             | 50             | 50             | 50             | 50             | 50             | 50             | 50             | 50             |  |  |
| Waste gas<br>blow-off                  | mm                                                                                             |         |                     | 315            | 315            | 315            | 400            | 400            | 400            | 600            | 600            | 600            |  |  |

<sup>1.</sup> Flow is measured at Reference Conditions: 1 bara and 20°C at operating pressure of 7 barg, inlet temperature 20°C & Air Inlet Quality of ISO 8573-1:2010 class 1-4-1

## PMNG 5 - 75 S - Nitrogen generator with membrane technology

#### **Features & Benefits**

- ▶ Energy-saving control
- Proprietary membrane technology ensuring lasting performance
  - No aging
  - No heater
- Guaranteed purity
  - · Reliable purity measurement
  - Easy to set up the device for purity levels between 95% and 99.5%
- ▶ All-in-one plug & play solution
  - All filters integrated in enclosed canopy design
  - · No buffer vessels required
  - Instant supply of nitrogen
  - No specialist installation or commissioning
- ► Optimal control and monitoring thanks to Purelogic™ Controller

#### **General Specifications**

- ▶ Membrane Nitrogen Generators
- ▶ Nitrogen purity achievable: 95%-99.5%
- ▶ Inlet pressure range: 4-13 barg / 60-189 psig
- ▶ Inlet temperature range: 5-50°C / 41-122°F
- Required inlet air quality:1-4-1 according to ISO 8573-1:2010
- ▶ Power supply: 115-230VAC / 50-60Hz



#### **Options**







Flow sensor



PDP sensor kit



High ambient temperature software



Permeate vent kit



Pneumatech's PMNG nitrogen generators utilize proprietary membrane separation technology. Membrane generators are an excellent choice in low (95%) to medium (99,5%) purity applications such as tire inflation, fire prevention, tank blanketing and pipeline drying. Nitrogen pressures can go up to 12 barg without the need for an additional booster.

With the PMNG, on-site nitrogen supply becomes exceptionally convenient. All pre-filters and controls are included inside the canopy. Only a supply of dry compressed air and electricity is needed to get nitrogen at the outlet of the generator. An outlet buffer vessel is not required, which results in significant space

savings and easy installation. Also the start-up procedure of the PMNG is made so straightforward that it does not require any specialist.

Thanks to the Purelogic<sup>™</sup> controller, the PMNG offers impressive control and monitoring capabilities. Various pressure and temperature sensors ensure that the membranes are used in the right working conditions. The nitrogen purity can easily be set with the purity regulator and is reliably monitored. The optional pressure dew point (PDP) sensor and oil indicator sensor safeguard air purity of class 1:4:1 according to ISO8573-1:2010 at the inlet of the membranes.

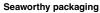
| Technical specifications for PMNG 5-75 S      |        |                      |        |         |         |         |         |             |             |  |  |  |  |
|-----------------------------------------------|--------|----------------------|--------|---------|---------|---------|---------|-------------|-------------|--|--|--|--|
| Specification                                 | Unit   | Product→<br>Purity ↓ | PMNG5s | PMNG10s | PMNG15s | PMNG30s | PMNG45s | PMNG60s     | PMNG75s     |  |  |  |  |
|                                               |        | 95%                  | 11.9   | 24.1    | 42.1    | 83.9    | 126.0   | 168.1       | 209.9       |  |  |  |  |
|                                               |        | 96%                  | 9.7    | 19.4    | 34.6    | 69.5    | 104.0   | 138.6       | 173.2       |  |  |  |  |
| Nominal free nitrogen delivery <sup>(1)</sup> | m³/hr  | 97%                  | 7.6    | 15.1    | 27.4    | 54.7    | 82.1    | 109.1       | 136.4       |  |  |  |  |
| delivery                                      | mynr   | 98%                  | 5.4    | 10.8    | 19.8    | 40.0    | 59.8    | 79.9        | 99.7        |  |  |  |  |
|                                               |        | 99%                  | 3.6    | 6.8     | 11.5    | 23.0    | 34.6    | 46.1        | 57.6        |  |  |  |  |
|                                               |        | 99.5%                | 2.5    | 5.0     | 7.2     | 14.8    | 22.0    | 29.5        | 36.7        |  |  |  |  |
|                                               |        | 95%                  | 31.0   | 62.3    | 109.1   | 218.5   | 327.6   | 436.7       | 546.1       |  |  |  |  |
|                                               |        | 96%                  | 29.2   | 58.0    | 104.0   | 208.1   | 311.8   | 415.8       | 519.8       |  |  |  |  |
| Naminal six assertmentian(1)                  | 2 //   | 97%                  | 26.6   | 52.9    | 95.4    | 191.2   | 286.6   | 382.3       | 477.7       |  |  |  |  |
| Nominal air consumption <sup>{1}</sup>        | m³/hr  | 98%                  | 23.4   | 47.2    | 85.7    | 171.7   | 257.4   | 343.1       | 428.8       |  |  |  |  |
|                                               |        | 99%                  | 22.0   | 43.6    | 72.7    | 145.4   | 218.2   | 291.2       | 364.0       |  |  |  |  |
|                                               |        | 99.5%                | 21.6   | 42.8    | 62.6    | 124.9   | 187.6   | 249.8       | 312.5       |  |  |  |  |
|                                               |        | 95%                  | 2.6    | 2.6     | 2.6     | 2.6     | 2.6     | 2.6         | 2.6         |  |  |  |  |
|                                               |        | 96%                  | 3      | 3       | 3       | 3       | 3       | 3           | 3           |  |  |  |  |
| Air factor                                    |        | 97%                  | 3.5    | 3.5     | 3.5     | 3.5     | 3.5     | 3.5         | 3.5         |  |  |  |  |
| Air factor                                    |        | 98%                  | 4.3    | 4.3     | 4.3     | 4.3     | 4.3     | 4.3         | 4.3         |  |  |  |  |
|                                               |        | 99%                  | 6.3    | 6.3     | 6.3     | 6.3     | 6.3     | 6.3         | 6.3         |  |  |  |  |
|                                               |        | 99.5%                | 8.5    | 8.5     | 8.5     | 8.5     | 8.5     | 8.5         | 8.5         |  |  |  |  |
| Pressure dewpoint outlet                      | °C /°F |                      | -40    | -40     | -40     | -40     | -40     | -40         | -40         |  |  |  |  |
| Langth                                        | mm     |                      | 820    | 820     | 820     | 820     | 820     | 820         | 820         |  |  |  |  |
| Length                                        | inch   |                      | 32.3   | 32.3    | 32.3    | 32.3    | 32.3    | 32.3        | 32.3        |  |  |  |  |
| \A/: d+la                                     | mm     |                      | 772    | 772     | 772     | 1470    | 1470    | 1470        | 1470        |  |  |  |  |
| Width                                         | inch   |                      | 30.4   | 30.4    | 30.4    | 57.9    | 57.9    | 57.9        | 57.9        |  |  |  |  |
| Haight                                        | mm     |                      | 2090   | 2090    | 2090    | 2090    | 2090    | 2090        | 2090        |  |  |  |  |
| Height                                        | inch   |                      | 82.3   | 82.3    | 82.3    | 82.3    | 82.3    | 82.3        | 82.3        |  |  |  |  |
| Mana                                          | Kg     |                      | 259    | 268     | 285     | 445     | 497     | 535         | 571         |  |  |  |  |
| Mass                                          | Lbs    |                      | 571    | 590     | 628     | 981     | 1096    | 1179        | 1259        |  |  |  |  |
| Inlet connections                             | G/NPT  |                      | 1/2"   | 1/2"    | 1/2"    | 1 1/2"  | 1 1/2"  | 1 1/2" - 1" | 1 1/2" - 1" |  |  |  |  |
| Outlet Connections                            | G/NPT  |                      | 1/2"   | 1/2"    | 1/2"    | 1"      | 1"      | 1"          | 1"          |  |  |  |  |

<sup>1.</sup> Flow is measured at Reference Conditions: 1 bara and 20°C at operating pressure of 8 barg, inlet temperature 20°C & Air Inlet Quality of ISO 8573-1:2010 class 1-4-1

## PPOG 1 - 120 - Oxygen generator with Pressure Swing Adsorption technology

#### **Features & Benefits**

- ▶ Energy saving control
- High-quality, high-efficient zeolite, selected for the right application
- Guaranteed purity
  - Zirconia sensors for reliable purity measurement
- Designed & tested for cyclic load
- ► Optimal control and monitoring thanks to Purelogic<sup>™</sup> Controller
- ► Available with IEC and CSA/UL approvals


#### **General Specifications**

- Pressure Swing Adsorption (PSA) Oxygen Generators - welded vessels
- Oxygen purity achievable: 90%-95%
- ▶ Inlet pressure range: 4-7.5 barg / 58-109 psig
- ▶ Inlet temperature range: 5-45°C /41-113 psig
- Required inlet air quality: 1-4-1 according to ISO 8573-1:2010
- ▶ Power supply: 115-230VAC / 50-60Hz



#### **Options**







PDP sensor kit



Oxygen buffer vessels



Pneumatech gives oxygen to your business. With the PPOG range, Pneumatech offers an attractive replacement for traditional oxygen supply with very interesting returns on investment. The PPOG1-120 series uses Pressure Swing Adsorption technology to extract oxygen from compressed air, resulting in oxygen purity levels up to 95%.

The PPOG1-120 range is a welded vessel design, designed and tested for cyclic load. The Purelogic<sup>™</sup> is the central brain of the generator. It optimizes operating costs thanks to the availability of the energy saving control; ensures maximum reliability by

monitoring the most important parameters of the generator; and offers impressive control and monitoring capabilities.

The calibrated flow meters are part of the standard scope of supply, in order to facilitate the start-up process and to provide transparency of the actual oxygen consumption. The optional oxygen buffer vessel is equipped with a pressure regulator, manometer and dust filter. Each of these components is approved for high-purity oxygen use. The optional inlet pressure dew point sensor provides additional security in case the upstream dryer would fail.

| Technical                                         | spec      | itication            | s tor     | PPOG        | 1-12      | U         |           |           |           |           |            |            |            |            |            |            |            |            |            |            |            |             |
|---------------------------------------------------|-----------|----------------------|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|-------------|
| Specifications                                    | Units     | Product→<br>Purity ↓ | PPOG<br>1 | PPOG<br>1.5 | PPOG<br>2 | PPOG<br>3 | PPOG<br>4 | PPOG<br>5 | PPOG<br>6 | PPOG<br>8 | PPOG<br>11 | PPOG<br>12 | PPOG<br>14 | PPOG<br>17 | PPOG<br>20 | PPOG<br>26 | PPOG<br>33 | PPOG<br>39 | PPOG<br>50 | PPOG<br>63 | PPOG<br>93 | PPOG<br>120 |
|                                                   |           | 90%                  | 2.0       | 3.1         | 3.8       | 4.6       | 6.6       | 7.9       | 9.7       | 14.2      | 18.5       | 20.3       | 23.4       | 29.3       | 35.1       | 45.3       | 56.0       | 66.1       | 85.5       | 106.8      | 157.7      | 203.5       |
| Nominal<br>free oxygen<br>delivery <sup>{1}</sup> | m³/hr     | 93%                  | 1.6       | 2.5         | 3.5       | 4.3       | 5.6       | 7.3       | 9.0       | 13.4      | 18.3       | 19.3       | 21.4       | 27.6       | 33.0       | 42.7       | 51.9       | 64.1       | 79.4       | 101.7      | 154.6      | 188.2       |
|                                                   |           | 95%                  | 1.5       | 2.3         | 3.4       | 4.0       | 5.4       | 6.9       | 8.3       | 12.2      | 15.4       | 18.3       | 20.3       | 26.3       | 31.6       | 39.2       | 48.8       | 57.0       | 74.3       | 93.6       | 143.4      | 175.0       |
|                                                   |           | 90%                  | 22.6      | 30.5        | 36.6      | 54.9      | 73.3      | 103.8     | 103.8     | 157.5     | 192.3      | 219.8      | 256.4      | 329.6      | 366.3      | 518.9      | 634.8      | 799.6      | 982.8      | 1245.3     | 1867.9     | 2246.3      |
| Nominal air consumption                           | m³/hr     | 93%                  | 22.0      | 29.9        | 36.0      | 53.7      | 67.1      | 100.7     | 102.6     | 146.5     | 189.2      | 213.6      | 244.2      | 319.9      | 355.3      | 512.8      | 604.3      | 781.3      | 964.5      | 1220.8     | 1953.3     | 2228.0      |
|                                                   |           | 95%                  | 21.4      | 28.7        | 35.4      | 51.9      | 65.9      | 97.7      | 102.6     | 140.4     | 170.9      | 207.5      | 238.1      | 313.1      | 347.9      | 500.5      | 586.0      | 763.0      | 915.6      | 1159.8     | 1892.3     | 2197.5      |
|                                                   |           | 90%                  | 11.1      | 10.0        | 9.7       | 12.0      | 11.1      | 13.1      | 10.7      | 11.1      | 10.4       | 10.8       | 11.0       | 11.3       | 10.4       | 11.5       | 11.3       | 12.1       | 11.5       | 11.7       | 11.8       | 11.0        |
| Average air / oxygen ratio                        |           | 93%                  | 13.5      | 11.8        | 10.4      | 12.6      | 12.0      | 13.8      | 11.5      | 10.9      | 10.3       | 11.1       | 11.4       | 11.6       | 10.8       | 12.0       | 11.6       | 12.2       | 12.2       | 12.0       | 12.6       | 11.8        |
|                                                   |           | 95%                  | 14.0      | 12.3        | 10.5      | 13.1      | 12.2      | 14.1      | 12.3      | 11.5      | 11.1       | 11.3       | 11.7       | 11.9       | 11.0       | 12.8       | 12.0       | 13.4       | 12.3       | 12.4       | 13.2       | 12.6        |
| Pressure<br>dewpoint<br>outlet (°C)               | °C /°F    |                      | -40       | -40         | -40       | -40       | -40       | -40       | -40       | -40       | -40        | -40        | -40        | -40        | -40        | -40        | -40        | -40        | -40        | -40        | -40        | -40         |
| Oxygen outlet quality                             |           |                      |           |             |           |           |           |           |           |           | ISC        | O8573-1    | I:2010 C   | lass 1-2   | 2-1        |            |            |            |            |            |            |             |
| Longth                                            | mm        |                      | 600.0     | 600.0       | 750.0     | 750.0     | 850.0     | 850.0     | 1120.0    | 1120.0    | 1190.0     | 1230.0     | 1230.0     | 1640.0     | 1765.0     | 1960.0     | 1960.0     | 1960.0     | 2470.0     | 2920.0     | 2470.0     | 2920.0      |
| Length                                            | Inch      |                      | 23.6      | 23.6        | 29.5      | 29.5      | 33.5      | 33.5      | 44.1      | 44.1      | 46.9       | 48.4       | 48.4       | 64.6       | 69.5       | 77.2       | 77.2       | 77.2       | 97.2       | 115.0      | 97.2       | 115.0       |
| Width                                             | mm        |                      | 757.0     | 757.0       | 770.0     | 770.0     | 848.0     | 848.0     | 875.0     | 875.0     | 924.0      | 943.0      | 947.0      | 1108.0     | 1135.0     | 1175.0     | 1175.0     | 1175.0     | 1305.0     | 1440.0     | 2610.0     | 2880.0      |
| widiii                                            | Inch      |                      | 29.8      | 29.8        | 30.3      | 30.3      | 33.4      | 33.4      | 34.4      | 34.4      | 36.4       | 37.1       | 37.3       | 43.6       | 44.7       | 46.3       | 46.3       | 46.3       | 51.4       | 56.7       | 102.8      | 113.4       |
| Haimbt                                            | mm        |                      | 1467.0    | 1489.0      | 1801.0    | 1801.0    | 1630.0    | 1630.0    | 1962.0    | 1962.0    | 2252.0     | 2278.0     | 2678.0     | 2450.0     | 2492.0     | 3094.0     | 3094.0     | 3592.0     | 3097.0     | 3280.0     | 3097.0     | 3280.0      |
| Height                                            | Inch      |                      | 57.8      | 58.6        | 70.9      | 70.9      | 64.2      | 64.2      | 77.2      | 77.2      | 88.7       | 89.7       | 105.4      | 96.5       | 98.1       | 121.8      | 121.8      | 141.4      | 121.9      | 129.1      | 121.9      | 129.1       |
| Mana                                              | Kg        |                      | 193.8     | 226.8       | 324.8     | 330.6     | 412.6     | 412.6     | 723.0     | 735.0     | 1009.3     | 1192.3     | 1321.2     | 2359.3     | 2632.7     | 3150.0     | 3150.0     | 3681.0     | 4908.0     | 6489.0     | 9746.0     | 12470.0     |
| Mass                                              | Lbs       |                      | 427.3     | 500.0       | 716.1     | 728.9     | 909.6     | 909.6     | 1593.9    | 1620.3    | 2225.1     | 2628.5     | 2912.7     | 5201.4     | 5804.1     | 6944.6     | 6944.6     | 8115.2     | 10820.3    | 14305.8    | 21486.2    | 27491.0     |
| Inlet connections                                 | G/<br>NPT |                      | G1/2"     | G1/2"       | G1/2"     | G1/2"     | G1/2"     | G1/2"     | G 3/4"    | G 3/4"    | G1"        | G1"        | G1"        | G1 1/2"    | G1 1/2"    | DN50       | DN50       | DN50       | DN50       | DN50       | 2xDN50     | 2xDN50      |
| Outlet connections                                | G/<br>NPT |                      | G3/8"     | G3/8"       | G3/8"     | G3/8"     | G3/8"     | G3/8"     | G1/2"     | G1/2"     | G1/2"      | G1/2"      | G1/2"      | G 3/4"     | 2xG3/4"    | 2xG3/4      |

<sup>1.</sup> Flow is measured at Reference Conditions: 1 bara and 20°C at operating pressure of compressed air of 6 barg and oxygen pressure at the outlet 4.5 barg, inlet temperature 20°C & Air Inlet Quality of ISO 8573-1:2010 class 1-4-1

## **Oxygen solutions**

Pneumatech offers packaged solutions for on-site oxygen generation, which guarantee peace-of-mind and quick returns compared to traditional oxygen supply.

A typical lineup consists of a compressor, a refrigerant dryer, filters, buffer vessels and a PPOG oxygen generator; and can be completed with a high-pressure oxygen booster and a bottle filling station. These can be containerized or skid-mounted, depending on the application and the needs.



Our boosters are available in 3 kW to 15 kW models and can safely and reliably boost oxygen, nitrogen, helium or argon up to 200 barg / 2900 psig. By boosting a gas to these high pressures, you can bottle the gas you generate. This is particularly interesting to cover peak demand or as emergency back-up.



Pneumatech's on-site oxygen systems generate oxygen from 90% up to 95% purity, and are thus compliant with European pharmacopeia and United States Pharmacopeia (USP). Our production locations are moreover certified according to ISO 13485, the international quality management system for medical devices.



## The versatility of air receivers

One or more air receivers are included in each compressor installation. The size is adapted, e.g. according to the compressor capacity, regulation system and the consumer's air requirement.

The air receiver forms a storage area for the compressed air, balances pulsation from the compressor and cools the air and collects condensation. Accordingly, the air receiver must be fitted with a drainage device.



# **Air Receivers**

Pneumatech offers receivers in a large variety of sizes and treatments to suit your needs. These can be used for compressed air or inert gases like nitrogen.

## V Range - Air & Nitrogen receivers

#### **Features and Benefits**

- Available in variety of sizes and treatments to suit your needs
  - Painted vessels
  - · Galvanized vessels
  - Vitrified vessels
- Equipped with connection kit as standard up to 3000 liters
  - Including pressure gauge, safety valves, and ball valves.
- Vitroflex vessels are 100% water and steam resistant

#### **General Specifications**

- Types: painted galvanized vitrified (Vitroflex)
- Max. pressure:
  - Standard range: 11 barg/ 160 psig
     Note: Each size will have different pressure rating.
     Refer table for specific details
  - High pressure range:
     16 barg/ 232psig
- ▶ Volume:
  - 100 5000 liters for standard range
  - 500 5000 liters for high pressure range

Vessels have several functions: they stabilize pressure peaks and provide thus a stable air- or nitrogen flow; have a storage function in case of a high consumption; and help with the preliminary separation and removal of condensate.

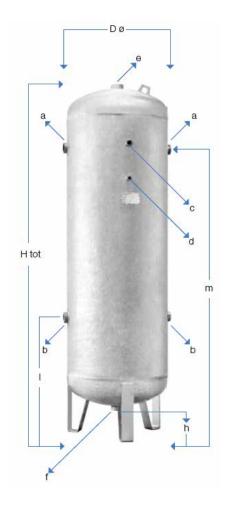
Pneumatech offers a wide range of vessels capable of handling pressures up to 16 barg / 232 psig. They are available in 3 types: painted, galvanized and vitrified. Painted vessels are generally used where receivers are not subjected to extreme weather conditions and perfectly clean air is not an absolute requirement. Galvanized vessels are used when there is a possibility of corrosion. Vitrified vessels (Vitroflex) are treated with vitreous enamel, which makes them 100% water and steam resistant.





Connection Kit




| Painted standa       | ırd vess | els  |       |       |      |       |       |       |          |          |        |        |
|----------------------|----------|------|-------|-------|------|-------|-------|-------|----------|----------|--------|--------|
| Variant              | V100     | V200 | V270  | V500  | V720 | V900  | V1000 | V1500 | V2000    | V3000    | V4000  | V5000  |
| Capacity (L)         | 100      | 200  | 270   | 500   | 720  | 900   | 1000  | 1500  | 2000     | 3000     | 4000   | 5000   |
| Pressure (barg)      | 11       | 11   | 11    | 11    | 10,8 | 11    | 12    | 11,5  | 11,5     | 11,5     | 11,5   | 11,5   |
| Diameter Ø           | 370      | 446  | 500   | 600   | 750  | 800   | 800   | 1000  | 1000     | 1200     | 1450   | 1450   |
| H tot (mm)           | 1172     | 1570 | 1668  | 2055  | 2030 | 2120  | 2315  | 2305  | 2805     | 2965     | 3070   | 3570   |
| h (mm)               | 124      | 174  | 170   | 155   | 150  | 130   | 115   | 180   | 180      | 185      | 180    | 180    |
| a                    | 3/4"     | 1"   | 1"    | 1"    | 1"   | 1"1/2 | 2"    | 2"    | 2"       | 3"       | 3"     | 3"     |
| b                    | 3/4"     | 1"   | 1"    | 1"    | 1"   | 1"1/2 | 2"    | 2"    | 2"       | 3"       | 3"     | 3"     |
| С                    | 3/8"     | 3/8" | 3/8"  | 3/8"  | 3/8" | 3/8"  | 3/8"  | 3/4"  | 3/4"     | 3/4"     | 3/4"   | 3/4"   |
| d                    | 3/8"     | 3/8" | n.d.  | n.d.  | 3/8" | 3/8"  | 3/8"  | 3/8"  | 3/8"     | 3/8"     | 3/8"   | 3/8"   |
| е                    | 1/2"     | 1/2" | 1/2"  | 2"    | 2"   | 2"    | 2"    | 1"1/4 | 1"1/4    | 1"1/4    | 1"1/4  | 1"1/4  |
| f                    | 1/2"     | 1/2" | 1/2"  | 2"    | 2"   | 2"    | 2"    | 1"1/4 | 1"1/4    | 1"1/4    | 1"1/4  | 1"1/4  |
| I (mm)               | 298      | 397  | 599   | 775   | 895  | 860   | 745   | 590   | 595      | 700      | 780    | 780    |
| m (mm)               | 998      | 1222 | 1304  | 1560  | 1705 | 1780  | 1685  | 1860  | 2355     | 2410     | 2430   | 2930   |
| Kit type included    | 1        | 2    | 3     | 4     | 4    | 6     | 7     | В     | В        | В        | Not in | cluded |
| Weight (kg)          | 37       | 51   | 62    | 127   | 180  | 200   | 204   | 278   | 352      | 537      | 802    | 923    |
| Applicable directive |          |      | 2014/ | 29/EU |      |       |       |       | 2014/68/ | EU (PED) |        |        |

| Galvanized sta       | ndard v | essels |       |       |       |       |       |       |          |          |        |        |
|----------------------|---------|--------|-------|-------|-------|-------|-------|-------|----------|----------|--------|--------|
| Variant              | V100    | V200   | V270  | V500  | V720  | V900  | V1000 | V1500 | V2000    | V3000    | V4000  | V5000  |
| Capacity (L)         | 100     | 200    | 270   | 500   | 720   | 900   | 1000  | 1500  | 2000     | 3000     | 4000   | 5000   |
| Pressure (barg)      | 11      | 11     | 11    | 11    | 10,8  | 11    | 11,5  | 11,5  | 11,5     | 11,5     | 11,5   | 11,5   |
| Diameter Ø           | 370     | 430    | 500   | 600   | 790   | 790   | 790   | 1000  | 1000     | 1200     | 1450   | 1450   |
| H tot (mm)           | 1229    | 1530   | 1685  | 2077  | 1863  | 2213  | 2345  | 2305  | 2805     | 2965     | 3070   | 3570   |
| h (mm)               | 176     | 135    | 192   | 174   | 200   | 200   | 200   | 180   | 180      | 185      | 180    | 180    |
| a                    | 3/4"    | 3/4"   | 3/4"  | 1"1/2 | 1"1/2 | 2"    | 2"    | 2"    | 2"       | 3"       | 3"     | 3"     |
| b                    | 3/4"    | 3/4"   | 3/4"  | 1"1/2 | 1"1/2 | 2"    | 2"    | 2"    | 2"       | 3"       | 3"     | 3"     |
| С                    | 3/8"    | 3/4"   | 3/4"  | 3/4"  | 3/4"  | 3/4"  | 3/4"  | 3/4"  | 3/4"     | 3/4"     | 3/4"   | 3/4"   |
| d                    | 3/8"    | 3/8"   | 3/8"  | 3/8"  | 3/8"  | 3/8"  | 3/8"  | 3/8"  | 3/8"     | 3/8"     | 3/8"   | 3/8"   |
| е                    | 2"      | 2"     | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4    | 1"1/4    | 1"1/4  | 1"1/4  |
| f                    | 2"      | 2"     | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4    | 1"1/4    | 1"1/4  | 1"1/4  |
| I (mm)               | 447     | 397    | 442   | 689   | 690   | 800   | 725   | 590   | 595      | 700      | 780    | 780    |
| m (mm)               | 1055    | 1280   | 1422  | 1689  | 1440  | 1800  | 1725  | 1860  | 2355     | 2410     | 2430   | 2930   |
| Kit type included    | 1       | Α      | Α     | Α     | Α     | Α     | В     | В     | В        | В        | Not in | cluded |
| Weight (kg)          | 40      | 55     | 66    | 143   | 184   | 209   | 224   | 306   | 387      | 591      | 882    | 1025   |
| Applicable directive |         |        | 2014/ | 29/EU |       |       |       |       | 2014/68/ | EU (PED) |        |        |

| Vitroflex stand      | ard vess | els  |       |       |       |       |       |       |          |          |         |        |
|----------------------|----------|------|-------|-------|-------|-------|-------|-------|----------|----------|---------|--------|
| Variant              | V100     | V200 | V270  | V500  | V720  | V900  | V1000 | V1500 | V2000    | V3000    | V4000   | V5000  |
| Capacity (L)         | 100      | 200  | 270   | 500   | 720   | 900   | 1000  | 1500  | 2000     | 3000     | 4000    | 5000   |
| Pressure (barg)      | N.A.     | 11   | 11    | 11    | 10,8  | 11    | 11,5  | 11,5  | 11,5     | 11,5     | 11,5    | 11,5   |
| Diameter Ø           | N.A.     | 430  | 500   | 600   | 790   | 790   | 790   | 1000  | 1000     | 1200     | 1450    | 1450   |
| H tot (mm)           | N.A.     | 1530 | 1685  | 2077  | 1863  | 2213  | 2345  | 2305  | 2805     | 2965     | 3070    | 3570   |
| h (mm)               | N.A.     | 135  | 192   | 174   | 200   | 200   | 200   | 180   | 180      | 185      | 180     | 180    |
| а                    | N.A.     | 3/4" | 3/4"  | 1"1/2 | 1"1/2 | 2"    | 2"    | 2"    | 2"       | 3"       | 3"      | 3"     |
| b                    | N.A.     | 3/4" | 3/4"  | 1"1/2 | 1"1/2 | 2"    | 2"    | 2"    | 2"       | 3"       | 3"      | 3"     |
| С                    | N.A.     | 3/4" | 3/4"  | 3/4"  | 3/4"  | 3/4"  | 3/4"  | 3/4"  | 3/4"     | 3/4"     | 3/4"    | 3/4"   |
| d                    | N.A.     | 3/8" | 3/8"  | 3/8"  | 3/8"  | 3/8"  | 3/8"  | 3/8"  | 3/8"     | 3/8"     | 3/8"    | 3/8"   |
| е                    | N.A.     | 2"   | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4    | 1"1/4    | 1"1/4   | 1"1/4  |
| f                    | N.A.     | 2"   | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4 | 1"1/4    | 1"1/4    | 1"1/4   | 1"1/4  |
| I (mm)               | N.A.     | 397  | 442   | 689   | 690   | 800   | 725   | 590   | 595      | 700      | 780     | 780    |
| m (mm)               | N.A.     | 1280 | 1422  | 1689  | 1440  | 1800  | 1725  | 1860  | 2355     | 2410     | 2430    | 2930   |
| Kit type included    | N.A.     | Α    | Α     | Α     | Α     | Α     | В     | В     | В        | В        | not inc | cluded |
| Weight (kg)          | N.A.     | 50   | 60    | 130   | 167   | 190   | 204   | 278   | 352      | 537      | 802     | 932    |
| Applicable directive |          |      | 2014/ | 29/EU |       |       |       |       | 2014/68/ | EU (PED) |         |        |

## V HP - Air & Nitrogen receivers

| Painted high press   | ure vessels |      |      |              |         |        |
|----------------------|-------------|------|------|--------------|---------|--------|
| Capacity (L)         | 500         | 1000 | 2000 | 3000         | 4000    | 5000   |
| Pressure (barg)      | 16          | 16   | 16   | 16           | 16      | 16     |
| Diameter Ø           | 600         | 800  | 1000 | 1200         | 1430    | 1430   |
| H tot (mm)           | 2055        | 2315 | 2810 | 2930         | 3110    | 3610   |
| h (mm)               | 155         | 115  | 175  | 170          | 190     | 190    |
| a                    | 1"          | 2"   | 2"   | 2"           | 2"      | 2"     |
| b                    | 1"          | 2"   | 2"   | 2"           | 2"      | 2"     |
| С                    | n.d.        | 3/8" | 3/4" | 3/4"         | 3/4"    | 3/4"   |
| d                    | 3/8"        | 3/8" | 3/8" | 3/8"         | 3/8"    | 3/8"   |
| е                    | 2"          | 2"   | 2"   | 2"           | 2"      | 2"     |
| f                    | 2"          | 2"   | 2"   | 2"           | 2"      | 2"     |
| I (mm)               | 775         | 745  | 565  | 645          | 765     | 765    |
| m (mm)               | 1560        | 1685 | 2340 | 2370         | 2450    | 2950   |
| Kit type included    | 5           | 8    | С    | С            | Not inc | cluded |
| Weight (kg)          | 159         | 246  | 490  | 620          | 905     | 1055   |
| Applicable directive | 2014/29/EU  |      | 20   | 14/68/EU (PE | ED)     |        |





| Galvanized high pressure vessels |                  |      |      |      |        |        |
|----------------------------------|------------------|------|------|------|--------|--------|
| Capacity (L)                     | 500              | 1000 | 2000 | 3000 | 4000   | 5000   |
| Pressure (barg)                  | 16               | 16   | 16   | 16   | 16     | 16     |
| Diameter Ø                       | 600              | 790  | 1000 | 1200 | 1430   | 1430   |
| H tot (mm)                       | 2120             | 2365 | 2810 | 2930 | 3110   | 3610   |
| h (mm)                           | 175              | 200  | 175  | 170  | 190    | 190    |
| a                                | 2"               | 2"   | 2"   | 2"   | 2"     | 2"     |
| b                                | 2"               | 2"   | 2"   | 2"   | 2"     | 2"     |
| С                                | 3/4"             | 3/4" | 3/4" | 3/4" | 3/4"   | 3/4"   |
| d                                | 3/8"             | 3/8" | 3/8" | 3/8" | 3/8"   | 3/8"   |
| е                                | 2"               | 2"   | 2"   | 2"   | 2"     | 2"     |
| f                                | 2"               | 2"   | 2"   | 2"   | 2"     | 2"     |
| I (mm)                           | 485              | 725  | 565  | 645  | 765    | 765    |
| m (mm)                           | 1745             | 1725 | 2340 | 2370 | 2450   | 2950   |
| Kit type included                | С                | С    | С    | С    | Not in | cluded |
| Weight (kg)                      | 176              | 308  | 539  | 682  | 995    | 1160   |
| Applicable directive             | 2014/68/EU (PED) |      |      |      |        |        |

| Vitroflex high pressure vessels |                  |      |      |      |        |        |
|---------------------------------|------------------|------|------|------|--------|--------|
| Capacity (L)                    | 500              | 1000 | 2000 | 3000 | 4000   | 5000   |
| Pressure (barg)                 | 16               | 16   | 16   | 16   | 16     | 16     |
| Diameter Ø                      | 600              | 790  | 1000 | 1200 | 1430   | 1430   |
| H tot (mm)                      | 2120             | 2365 | 2810 | 2930 | 3110   | 3610   |
| h (mm)                          | 175              | 200  | 175  | 170  | 190    | 190    |
| a                               | 2"               | 2"   | 2"   | 2"   | 2"     | 2"     |
| b                               | 2"               | 2"   | 2"   | 2"   | 2"     | 2"     |
| С                               | 3/4"             | 3/4" | 3/4" | 3/4" | 3/4"   | 3/4"   |
| d                               | 3/8"             | 3/8" | 3/8" | 3/8" | 3/8"   | 3/8"   |
| е                               | 2"               | 2"   | 2"   | 2"   | 2"     | 2"     |
| f                               | 2"               | 2"   | 2"   | 2"   | 2"     | 2"     |
| I (mm)                          | 485              | 725  | 565  | 645  | 765    | 765    |
| m (mm)                          | 1745             | 1725 | 2340 | 2370 | 2450   | 2950   |
| Kit type included               | С                | С    | С    | С    | Notino | cluded |
| Weight (kg)                     | 176              | 308  | 490  | 620  | 905    | 1055   |
| Applicable directive            | 2014/68/EU (PED) |      |      |      |        |        |

# Pure productivity, our passion

Maximizing your productivity is one of Pneumatech's core objectives. We listen to and understand your various needs. We analyze your requirements to come up with the right solution that adds value to your production processes. We help you configure your compressed air applications so that they consume the least amount of compressed air to achieve your production requirements. We engineer our compressed air and gas solutions for the high performance and outstanding durability you need to keep your production up and running optimally.







# **Purity measurement** equipment

Pneumatech adds an extensive range of purity measurement equipment to its portfolio. By measuring dew point, pressure, flow and air purity, the most important parameters of a compressed air system are controlled.

This will not only confirm the performance of your air treatment products, it will also give room to improve the current set-up. At the end, you can't improve what you don't measure.

## PDP CHECK M - Mobile PDP measurement

#### **General Specifications**

- Measuring range
  - Pressure dew point: -80 to +50°C
  - Compressed air temperature: -20 to +70°C
  - Ambient temperature: 0 to +50°C
  - Pressure: 1-50 barg
- Accuracy
  - +/- 0,5°C in PDP range between -10 to -50°C
  - +/- 2% in other part of the range
- Power supply: Internal rechargeable Li-lon batteries
- +/- 12 h continuous operation,4 h charging time
- ▶ Mechanical connection: G 1/2" thread

Note

- Pressure sensors can also be ordered separately
  - PRESS SENS 1: standard pressure sensor from 0-16 barg, ± 1 % accuracy of full scale
  - PRESS SENS 2: standard pressure sensor from 0-40 barg, ± 1 % accuracy of full scale

PDP CHECK M is Pneumatech's portable dew point measurement device for all types of dryers down to -80°C pressure dew point. The 5" colour display with touch screen shows current pressure dew point, as well as the dew point curve of the dryer over a longer period of time. Up to 100 million measured values can be stored and transferred to your computer via a USB stick and the optional data evaluation software. Also data analysis is made easier thanks to this software.





Data evaluation software



PRESS CHECK pressure sensor



Re-calibration with ISO certificate

# PDP CHECK S - Stationary PDP measurement

The PDP CHECK S is Pneumatech's reliable stationary dew point measurement device for both refrigeration and adsorption dryers. It is a plug-and-play solution, having both PDP sensor and power supply completely wired to the controller. The PDP sensor is long-term stable and can be installed and removed quickly and easily under pressure by means of the measuring chamber. The sensor comes with a calibration certificate as standard.

The controller has 2 alarm outputs, with adjustable set values, which can be connected to the optional light & buzzer.



#### **Options**



Alarm light & buzzer

## **General Specifications**

- ▶ Measuring range
  - Pressure dew point:
  - Model 1: -80 to 20°C
  - Model 2: -20 to 50°C
  - Compressed air temperature: -20 to +70°C
  - Ambient temperature: -10 to +60°C
  - Pressure: 1-16 barg
- Accuracy
  - +/- 1°C at PDP of -20 to 20°C
  - +/- 2°C at PDP of -50 to -20°C
  - +/- 3°C at PDP of -50 to -80°C
- Electrical supply: 230VAC 50/60Hz; 110VAC 50/60Hz; 24VDC 50/60Hz
- ▶ Output:
  - 2 alarm contacts (max 250VAC, 3A)
  - 4-20mA analogue output
- ▶ Protection class: IP65
- Mechanical connection: Quick coupling

#### **Note**

- ▶ PDP sensors, measuring chambers and connections cables can also be ordered separately:
  - Dew point sensor for refrigeration dryers (measuring range: -20 to 50°C) incl. inspection certificate, 4-20 mA output signal (3-wire connection) and Modbus-RTU interface
  - Dew point sensor for adsorption dryers (measuring range: -80 to 20°C)incl. inspection certificate, 4-20 mA output signal (3-wire connection) and Modbus-RTU interface
  - Standard measuring chamber up to 16 barg
  - Connection cable for VA/FA, 5 m with M12 plug
  - Connection cable for VA/FA, 10 m with M12 plug

#### **FLOW CHECK - Flow measurement**

#### **General Specifications**

- Calorimetric flow meters with integrated measuring section
- ▶ Gas: air
  - Available on request: nitrogen, argon, nitrous oxide, CO<sub>2</sub>, oxygen
- ▶ Measuring range:
  - Temperature: -30 to -80 °C
  - Pressure: 16 barg
- ➤ Accuracy: +/- 1,5% of measured value +/- 0,3% of full scale
- ▶ Electrical supply: 18-36 VDC, 5W
- ▶ Output:
  - Digital: RS485 interface, Modbus-RTU
  - Analogue: 4-20 mA
  - Pulse: 1 pulse per unit of measurement; galvanically separated

The FLOW CHECK range is an extensive range of calorimetric flow meters, covering flows up to 1200 m³/hr. The compact flow meters are integrated on pre-defined measuring pipes, in order to guarantee correct and stable measurement; and to enable the easy removal and cleaning of the measuring device.

The FLOW CHECK is equipped with a twistable display, which shows both the actual flow (in m³/hr; l/min; etc.) and the total consumption (in m³; litres; etc.). The integrated Modbus is standard on all devices and enables connection to external control systems (energy & building management systems, SCADA, SPS) for data read-out and changes to parameters. Measured data can also be transferred via an analogue 4-20 mA output (flow) and a pulse output (consumption).









Connection Cables

#### **LEAK CHECK -** Leak detection

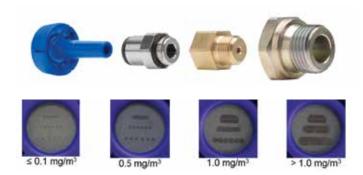
Leaks can be a significant source of wasted energy in an industrial compressed air system, sometimes wasting 20-30% of a compressor's output. Proactive leak detection and repair can thus significantly reduce this waste of energy and money!

Pneumatech's LEAK CHECK solution detects the smallest leaks from distances of several meters, by transforming the ultrasonic noises (generated by a leak) into an audible signal. This is done through acoustic trumpets for general leak detection and focus tubes for precise locating.

LEAK CHECK includes a headset, focus tube, acoustic trumpet and battery charger, all packaged in a compact transport case. The soundproof headset enables leak detection in extremely noisy environments. The device meets the requirements of Class I instruments of the 'Standard Test Method for leaks using Ultrasonic' (ASTM Int. - E1002-05).






#### **General Specifications**

- Measuring range
  - Working frequency: 40 kHz ± 2 kHz
  - Operating temperature: 0 to +40°C
  - Storage temperature: -10 to +50°C
- ▶ Power supply: Internal rechargeable batteries
  - +/- 10 h continuous operation, 1,5 h charging time

## **OIL CHECK - Oil aerosol detection**

The OIL CHECK solution gives the possibility to perform onthe-spot oil contamination testing at an affordable cost. The test procedure is simple and fast. A disposable impactor capsule is attached close to the point of use in the network without any interruption to the compressor operation. The air sample flows vertically through multiple nozzles onto an engraved glass baffle plate. If any oil (ranging from 0,1 mg/m³) is present in the airflow, a reading of particulate spot patterns is compared with scaled images on aninstruction sheet for immediate interpretation.





# OIL VAP CHECK - Oil vapor detection

The residual oil vapor content sensor OIL VAP CHECK measures the vaporous residual oil content in the compressed air; and can thus be installed as additional protection after VT activated carbon towers. By taking compressed air samples continuously, oil vapor contents as low as 0,0006 mg/m³ can be detected.



#### **General Specifications**

- Measuring range
  - Oil vapor content: 0,0006 5 mg/m<sup>3</sup>
  - Relative humidity: <=40%
  - Compressed air temperature: 5 55°C
  - Ambient temperature: 5 45°C
  - Pressure: 3 5 barg
- ▶ Noticeable substances: polyalphaolefins, aliphatic hydrocarbons, hydrocarbons, functional hydrocarbons, aromatics
- ► Accuracy: 0,003 mg/m³
- ► Electrical supply: 230 VAC 50 Hz ±10%; 115VAC 60 Hz ±10%
- ► Connections: G 3/8" internal thread









Integrated Ethernet interface

Integrated Webserver

## **CHECKBOX M - Portable data logger**

The CHECKBOX is Pneumatech's portable data logger for all air treatment measurement, whether it is pressure, dew point, flow, temperature or current. The mobile chart recorder gives the possibility to connect up to four sensors or meters. Through the 3,5" color display with touch panel it is possible to display the values of all relevant parameters or to plot them as graphs. Data is stored on a memory card or USB stick; or can be extracted through the optional Ethernet connection. Through the calculator function (optional) data can be converted into typical Key Performance Indicators for your plant, such as cost per m³ generated air.

The CHECKBOX is available in a mobile (M) and a stationary (S) version.

#### **General Specifications**

- ▶ Dimensions: 270 x 225 x 156 mm
- ▶ Weight: 2,2 kg
- Power supply: Internal rechargeable Li-lon batteries
- +/- 8 h continuous operation,4 h charging time
- ▶ Inputs: 2 x 2 sensor input for digital or analogue sensor signals
  - Digital: Flow, PDP, Current, Third party sensors
  - Analogue: Pressure, clamp-on ammeter, temperature, third party sensors



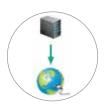


Data evaluation software



Integrated Ethernet interface

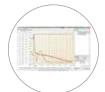



Integrated Webserver

# **CHECKBOX S - Stationary data logger**



## **General Specifications**


- ▶ Dimensions: 118 x 115 x 98 mm
- ▶ Weight: 2,2 kg
- ▶ Output: potential-free alarm relays
- ▶ Power supply: 100 240 VAC 50-60Hz
- USB interface
- Inputs: 2 sensor inputs for digital or analogue sensor signals
  - Digital: Flow, PDP, Current, Third party sensors
  - Analogue: Pressure, clamp-on ammeter, temperature, third party sensors



Integrated Webserver



Integrated Ethernet interface



Data evaluation software



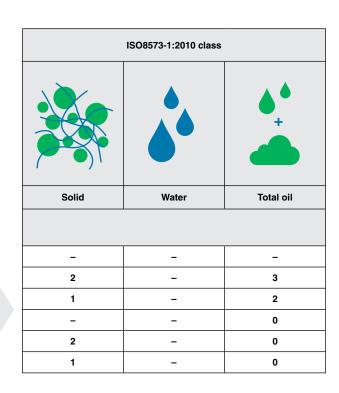
Integrated data logger for 100 million measured values

# **Compressed air purity**

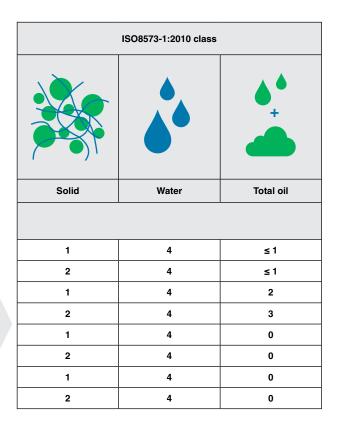
At different points of use, different compressed air purities might be needed, depending on the application. ISO8573-1:2010 is the latest international standard for compressed air purity specification and defines purity classes for compressed air with respect to solid particles, water and oil.

The following tables specify which ISO8573-1:2010 purity classes are reached for certain combinations of Pneumatech dryers and filters. The applied color codes are explained in the general guidelines on the next page.

## **Without Dryers**


|                      | Compressor          |
|----------------------|---------------------|
| Product              |                     |
| Contaminant          |                     |
| Pneumatech reference |                     |
|                      |                     |
|                      | Oil-injected        |
|                      |                     |
|                      | Oil-free without    |
|                      | oil vapors at inlet |

## With Refrigeration Dryer


|                      | Compressor          | Water separator | Coalescing filter – fine | Refrigeration dryer | Coalescing filter –<br>super fine |
|----------------------|---------------------|-----------------|--------------------------|---------------------|-----------------------------------|
| Product              |                     | <b>T</b>        |                          | CC<br>Preumanich    |                                   |
| Contaminant          |                     | Water aerosol   | Oil aerosol & particles  | Water vapor         | Oil aerosol & particles           |
| Pneumatech reference |                     | sw              | G                        | AC/AD/Cool          | С                                 |
|                      |                     | •               | •                        | •                   | •                                 |
|                      |                     | •               | •                        | •                   | •                                 |
|                      | Oil-injected        | •               | •                        | •                   | •                                 |
|                      |                     | •               | •                        | •                   |                                   |
|                      | Oil-free without    |                 | •                        | •                   | •                                 |
|                      | oil vapors at inlet | •               | •                        | •                   |                                   |
|                      | Oil-free with       | •               | •                        | •                   | •                                 |
|                      | oil vapors at inlet | •               | •                        | •                   |                                   |



| Water separator | Coalescing filter – fine | Coalescing filter –<br>super fine |  |
|-----------------|--------------------------|-----------------------------------|--|
|                 |                          |                                   |  |
| Water aerosol   | Oil aerosol & particles  | Oil aerosol & particles           |  |
| sw              | G                        | С                                 |  |
| •               |                          |                                   |  |
| •               | •                        |                                   |  |
| •               | •                        | •                                 |  |
| •               |                          |                                   |  |
| •               | •                        |                                   |  |
| •               | •                        | •                                 |  |

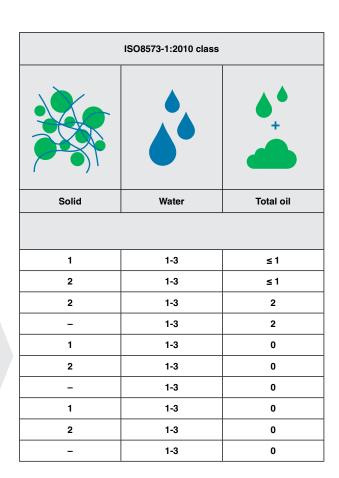


| Activated carbon tower | Dust filter –<br>general protection | Dust filter –<br>high efficiency |  |
|------------------------|-------------------------------------|----------------------------------|--|
|                        |                                     |                                  |  |
| Oil vapor              | Dry dust                            | Dry dust                         |  |
| VT/V                   | s                                   | D                                |  |
| •                      | •                                   | •                                |  |
| •                      | •                                   |                                  |  |
|                        |                                     |                                  |  |
|                        |                                     |                                  |  |
|                        |                                     |                                  |  |
|                        |                                     |                                  |  |
| •                      | •                                   | •                                |  |
| •                      | •                                   |                                  |  |



# **Compressed air purity**

## With Adsorption Dryer


|                      | Compressor                                         | Water separator | Coalescing filter – fine | Coalescing filter –<br>super fine | Adsorption dryer |
|----------------------|----------------------------------------------------|-----------------|--------------------------|-----------------------------------|------------------|
| Product              |                                                    |                 | <b>6</b>                 | S Inst                            |                  |
| Contaminant          |                                                    | Water aerosol   | Oil aerosol & particles  | Oil aerosol & particles           | Water vapor      |
| Pneumatech reference |                                                    | sw              | G                        | С                                 | PB/PE/PH         |
|                      | Oil-injected  Oil-free without oil vapors at inlet | •               | •                        | •                                 | •                |
|                      |                                                    | •               | •                        | •                                 | •                |
|                      |                                                    | •               | •                        | •                                 | •                |
|                      |                                                    | •               | •                        | •                                 | •                |
|                      |                                                    | •               |                          | •                                 | •                |
|                      |                                                    | •               |                          | •                                 | •                |
|                      |                                                    | •               |                          | •                                 | •                |
|                      |                                                    | •               |                          | •                                 | •                |
|                      | Oil-free with oil vapors at inlet                  | •               |                          | •                                 | •                |
|                      |                                                    | •               |                          | •                                 | •                |

#### **General guidelines**

- You always need to install a water separating device in front of a coalescing filter. This can be either a freestanding version (SW) or an integrated water separating device in the after cooler.
- You always need to install a dryer in front of an oil vapor removal filter (VT/V).
- It is recommended to install a G coalescence filter in front of a free-standing refrigeration dryer.
- It is recommended to install a G C combination in front of an adsorption dryer, in case of oil-injected compressors.
- It is recommended to install an additional P pre-filter upstream the G filter in case of heavy contamination.
- In case of critical applications, it is better to install air treatment products at point of use, in order to make sure that pipeline contamination is removed.



| Activated carbon tower | Dust filter – general protection | Dust filter –<br>high efficiency |
|------------------------|----------------------------------|----------------------------------|
|                        | S)                               |                                  |
| Oil vapor              | Dry dust                         | Dry dust                         |
| VT/V                   | s                                | D                                |
| •                      | •                                | •                                |
| •                      | •                                |                                  |
|                        | •                                |                                  |
|                        |                                  |                                  |
|                        | •                                | •                                |
|                        | •                                |                                  |
|                        |                                  |                                  |
| •                      | •                                | •                                |
| •                      | •                                |                                  |
| •                      |                                  |                                  |



## ISO8573-1:2010 purity classes

|              | Solid particles                                                                 |                   |                   | Wa    | Total Oil*    |        |
|--------------|---------------------------------------------------------------------------------|-------------------|-------------------|-------|---------------|--------|
| Purity Class | Number of particles per m <sup>3</sup>                                          |                   | Pressure dewpoint |       | Concentration |        |
|              | 0.1< d ≤ 0.5μm**                                                                | 0.5 < d ≤ 1.0μm** | 1.0 < d ≤ 5.0µm** | °C    | °F            | mg/m³  |
| 0            | As specified by the equipment user or supplier and more stringent than Class 1. |                   |                   |       |               |        |
| 1            | ≤ 20.000                                                                        | ≤ 400             | ≤ 10              | ≤ -70 | ≤ -94         | ≤ 0.01 |
| 2            | ≤ 400.000                                                                       | ≤ 6.000           | ≤ 100             | ≤ -40 | ≤ -40         | ≤ 0.1  |
| 3            | -                                                                               | ≤90.000           | ≤ 1.000           | ≤ -20 | ≤-4           | ≤ 1    |
| 4            | -                                                                               | -                 | ≤ 10.000          | ≤ 3   | ≤ 37.4        | ≤ 5    |
| 5            | -                                                                               | -                 | ≤ 100.000         | ≤ 7   | ≤ 44.6        | -      |
| 6            | ≤ 5mg/m³                                                                        |                   | ≤ 10              | ≤ 50  | -             |        |

<sup>\*</sup> Liquid, aerosol and vapor\*\* d= diameter of the particle



Pneumatech reserves the right to change or revise specifications and product design in connection with any features of our products. Such changes do not entitle the buyer to corresponding changes, improvements, additions or replacements for equipment previously sold or shipped.

© 2017 Pneumatech. All rights reserved.

